A374996 Square array read by antidiagonals: T(n,k) is the total cost when the elements of the k-th composition (in standard order) are requested from a self-organizing list initialized to (1, 2, 3, ...), using the move-ahead(n) updating strategy; n, k >= 0.
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 1, 0, 3, 3, 2, 2, 1, 0, 3, 4, 3, 2, 2, 1, 0, 3, 3, 4, 3, 2, 2, 1, 0, 4, 3, 3, 4, 3, 2, 2, 1, 0, 4, 4, 3, 3, 4, 3, 2, 2, 1, 0, 4, 4, 4, 3, 3, 4, 3, 2, 2, 1, 0, 4, 3, 5, 4, 3, 3, 4, 3, 2, 2, 1, 0, 4, 5, 3, 5, 4, 3, 3, 4, 3, 2, 2, 1, 0
Offset: 0
Examples
Array begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+----------------------------------------------- 0 | 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 1 | 0 1 2 2 3 4 3 3 4 4 3 5 4 5 4 4 2 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 3 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 4 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 5 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 6 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 7 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 8 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 9 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 10 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 11 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 12 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 13 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 14 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4 15 | 0 1 2 2 3 4 3 3 4 5 3 5 4 5 4 4
Links
- John Tyler Rascoe, Antidiagonals n = 0..139, flattened
- Ran Bachrach and Ran El-Yaniv, Online list accessing algorithms and their applications: recent empirical evidence, Proceedings of the 8th annual ACM-SIAM symposium on discrete algorithms, SODA ’97, New Orleans, LA, January 5-7, 1997, 53-62.
- Wikipedia, Self-organizing list.
Programs
-
Python
def comp(n): # see A357625 return def A374996(n,k): if k<1: return 0 cost,c = 0,comp(k) m = list(range(1,max(c)+1)) for i in c: j = m.index(i) cost += j+1 jp = 0 if j >= n: jp += j-n m.insert(jp,m.pop(j)) return cost # John Tyler Rascoe, Aug 02 2024
Formula
The sum of T(n,k) over all k such that A000120(k) = j (number of requests) and A333766(k) <= m (upper bound on the requested elements) equals m^j * j * (m+1)/2. This is a consequence of the fact that the first m positions of the list are occupied by the elements 1, ..., m, as long as no element larger than m has been requested so far.
Comments