cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375091 First element p of sexy prime pairs (p,p+6) whose concatenation is also prime.

Original entry on oeis.org

11, 13, 17, 31, 83, 97, 101, 151, 157, 167, 223, 227, 233, 251, 257, 263, 271, 331, 353, 373, 433, 461, 541, 601, 653, 677, 727, 821, 823, 877, 941, 971, 1013, 1033, 1181, 1187, 1223, 1367, 1447, 1453, 1657, 1693, 1741, 1861, 1973, 1993, 1997, 2207, 2281, 2333, 2393, 2441
Offset: 1

Views

Author

James S. DeArmon, Jul 29 2024

Keywords

Examples

			11 is the first term, since (11,17) are sexy primes and 1117 is also prime.
The second term is 13, since 1319 is prime.
		

Crossrefs

Intersection of A023201 and A032621.

Programs

  • Maple
    q:= p-> andmap(isprime, [p, p+6, parse(cat(p, p+6))]):
    select(q, [$2..3000])[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    Select[Prime[Range[370]], PrimeQ[#+6] && PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[#+6]]]] &] (* Stefano Spezia, Aug 03 2024 *)
  • PARI
    isp(p) = isprime(p+6) && isprime(eval(concat(Str(p), Str(p+6))))
    select(isp, primes(100)) \\ Michel Marcus, Aug 02 2024
  • Python
    from sympy import isprime
    def ok(n): return isprime(n) and isprime(n+6) and isprime(int(str(n)+str(n+6)))
    print([k for k in range(2500) if ok(k)]) # Michael S. Branicky, Aug 01 2024