cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375219 T(n,k) is the number of permutations of the multiset {1, 1, 1, 2, 2, 2, ..., n, n, n} with k occurrences of fixed triples (j,j,j), where T(n,k), n >= 2, 0 <= k <= n-2 is a triangle read by rows.

Original entry on oeis.org

19, 1622, 57, 362997, 6488, 114, 166336604, 1814985, 16220, 190, 136221590695, 998019624, 5444955, 32440, 285, 181552310074386, 953551134865, 3493068684, 12704895, 56770, 399, 367942716863474473, 1452418480595088, 3814204539460, 9314849824, 25409790, 90832, 532
Offset: 2

Views

Author

Hugo Pfoertner, Aug 08 2024

Keywords

Comments

Trivially, T(n,n) = 1 and T(n,n-1) = 0.

Examples

			The triangle begins
         19;
       1622,      57;
     362997,    6488,   114,
  166336604, 1814985, 16220, 190;
.
T(2,0) = 19: the permutations of {1,1,1,2,2,2} with no fixed triples are
[1,1,2,1,2,2], [1,1,2,2,1,2], [1,1,2,2,2,1], [1,2,1,1,2,2], [1,2,1,2,1,2], [1,2,1,2,2,1], [1,2,2,1,1,2], [1,2,2,1,2,1], [1,2,2,2,1,1], [2,1,1,1,2,2], [2,1,1,2,1,2], [2,1,1,2,2,1], [2,1,2,1,1,2], [2,1,2,1,2,1], [2,1,2,2,1,1], [2,2,1,1,1,2], [2,2,1,1,2,1], [2,2,1,2,1,1], [2,2,2,1,1,1].
		

Crossrefs

Cf. A014606.
Cf. A374980, A375223 (columns 0 and 1 in a similar triangle for the multiset {1, 1, 2, 2, ..., n, n}).

Programs

  • PARI
    mima (x, n1=1, i2=-oo) = {my (n2, n=#x, mi=x[n1], ma=mi); n2=if (i2<=0, n, min(n,i2)); for (i=n1+1, n2, if (x[i]ma, ma=x[i]))); [mi,ma]};
    \\ returns row n of triangle, bsize is the block size in the multiset.
    a375219(n, bsize=3) = {my (p=vector(bsize*n, i, 1+(i-1)\bsize), r=s=vector(n), m=vector(n-1)); forperm (p, q, for (b=1, n, my (bm=bsize*(b-1), j=mima(q, bm+1, bm+bsize)); r[b]=j[1]; s[b]=j[2]); my (rs=vector(n, i, r[i]==i && s[i]==i)); for (k=0 ,n-2, m[k+1]+=vecsum(rs)==k)); m}

Formula

Sum_{j=0..n-2} T(n,j) = (3*n)!/(6^n) - 1 = A014606(n) - 1.

Extensions

More terms (three rows) from Alois P. Heinz, Aug 16 2024