A375219 T(n,k) is the number of permutations of the multiset {1, 1, 1, 2, 2, 2, ..., n, n, n} with k occurrences of fixed triples (j,j,j), where T(n,k), n >= 2, 0 <= k <= n-2 is a triangle read by rows.
19, 1622, 57, 362997, 6488, 114, 166336604, 1814985, 16220, 190, 136221590695, 998019624, 5444955, 32440, 285, 181552310074386, 953551134865, 3493068684, 12704895, 56770, 399, 367942716863474473, 1452418480595088, 3814204539460, 9314849824, 25409790, 90832, 532
Offset: 2
Examples
The triangle begins 19; 1622, 57; 362997, 6488, 114, 166336604, 1814985, 16220, 190; . T(2,0) = 19: the permutations of {1,1,1,2,2,2} with no fixed triples are [1,1,2,1,2,2], [1,1,2,2,1,2], [1,1,2,2,2,1], [1,2,1,1,2,2], [1,2,1,2,1,2], [1,2,1,2,2,1], [1,2,2,1,1,2], [1,2,2,1,2,1], [1,2,2,2,1,1], [2,1,1,1,2,2], [2,1,1,2,1,2], [2,1,1,2,2,1], [2,1,2,1,1,2], [2,1,2,1,2,1], [2,1,2,2,1,1], [2,2,1,1,1,2], [2,2,1,1,2,1], [2,2,1,2,1,1], [2,2,2,1,1,1].
Crossrefs
Programs
-
PARI
mima (x, n1=1, i2=-oo) = {my (n2, n=#x, mi=x[n1], ma=mi); n2=if (i2<=0, n, min(n,i2)); for (i=n1+1, n2, if (x[i]
ma, ma=x[i]))); [mi,ma]}; \\ returns row n of triangle, bsize is the block size in the multiset. a375219(n, bsize=3) = {my (p=vector(bsize*n, i, 1+(i-1)\bsize), r=s=vector(n), m=vector(n-1)); forperm (p, q, for (b=1, n, my (bm=bsize*(b-1), j=mima(q, bm+1, bm+bsize)); r[b]=j[1]; s[b]=j[2]); my (rs=vector(n, i, r[i]==i && s[i]==i)); for (k=0 ,n-2, m[k+1]+=vecsum(rs)==k)); m}
Formula
Sum_{j=0..n-2} T(n,j) = (3*n)!/(6^n) - 1 = A014606(n) - 1.
Extensions
More terms (three rows) from Alois P. Heinz, Aug 16 2024
Comments