A375239 Numbers k such that k, k+1, ..., k+5 all have 3 prime factors (counted with multiplicity).
2522, 4921, 18241, 25553, 27290, 40313, 90834, 95513, 98282, 98705, 117002, 120962, 136073, 136865, 148682, 153794, 181441, 181554, 185825, 211673, 211674, 212401, 215034, 216361, 231002, 231665, 234641, 236041, 236634, 266282, 281402, 285410, 298433, 298434, 330473, 331985, 346505, 381353
Offset: 1
Keywords
Examples
a(3) = 18241 is a term because 18241 = 17 * 29 * 37 18242 = 2 * 7 * 1303 18243 = 3^2 * 2027 18244 = 2^2 * 4561 18245 = 5 * 41 * 89 18246 = 2 * 3 * 3041 are all products of 3 primes (counted with multiplicity).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: p:= 1: while count < 100 do p:= nextprime(p); x:= 4*p; if andmap(t -> numtheory:-bigomega(t)=3, [x-2,x-1,x+1,x+2]) then if numtheory:-bigomega(x-3) = 3 then R:= R, x-3; count:= count+1; fi; if numtheory:-bigomega(x+3) = 3 then R:= R, x-2; count:= count+1; fi; fi; od: R;
-
Mathematica
s = {}; Do[If[{3, 3, 3, 3, 3, 3} == PrimeOmega[Range[k, k + 5]], AppendTo[s, k]], {k, 1000000}]; s
Comments