cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375373 Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^2) ).

Original entry on oeis.org

1, -2, 4, -4, 6, -4, 9, -4, 16, 0, 28, 16, 57, 58, 132, 172, 322, 476, 817, 1272, 2112, 3360, 5496, 8832, 14353, 23158, 37540, 60668, 98238, 158876, 257145, 415988, 673168, 1089120, 1762324, 2851408, 4613769, 7465138, 12078948, 19544044, 31623034, 51167036
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x)^2(1-x^2(1+x)^2)),{x,0,50}],x] (* or *) LinearRecurrence[{-2,0,4,6,4,1},{1,-2,4,-4,6,-4},50] (* Harvey P. Dale, Dec 11 2024 *)
  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^2)))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k-2, n-2*k));

Formula

a(n) = -2*a(n-1) + 4*a(n-3) + 6*a(n-4) + 4*a(n-5) + a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k-2,n-2*k).
2*a(n) = 2*(-1)^n*(n+1) +A212804(n)-A057078(n). - R. J. Mathar, Aug 14 2024

A077883 Expansion of (1-x)^(-1)/(1-x^2+x^3).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 2, -1, 3, -2, 5, -4, 8, -8, 13, -15, 22, -27, 38, -48, 66, -85, 115, -150, 201, -264, 352, -464, 617, -815, 1082, -1431, 1898, -2512, 3330, -4409, 5843, -7738, 10253, -13580, 17992, -23832, 31573, -41823, 55406, -73395, 97230, -128800, 170626, -226029, 299427, -396654
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-x^2+x^3),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,-2,1},{1,1,2,1},60] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    Vec((1-x)^(-1)/(1-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n\2, binomial(k-1, n-2*k)); \\ Seiichi Manyama, Aug 14 2024

Formula

G.f.: (1-x)^(-1)/(1-x^2+x^3).
a(n) = a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) with a(0)=1, a(1)=1, a(2)=2, a(3)=1. - Harvey P. Dale, Mar 26 2012
a(n) = (-1)^n * Sum_{k=0..floor(n/2)} binomial(k-1,n-2*k). - Seiichi Manyama, Aug 14 2024
Showing 1-2 of 2 results.