Original entry on oeis.org
0, 1, 1, 3, 8, 23, 62, 178, 495, 1413, 4015, 11511, 33000, 95079, 274163, 792586, 2294010, 6649760, 19295361, 56048352, 162940687, 474069314, 1380215558, 4020916787, 11720484787, 34181438615, 99733002848, 291122869293, 850134963598, 2483484854325, 7257482455313
Offset: 0
A375546
Triangle read by rows: T(n, k) = Sum_{d|n} d * A375467(d, k) for n > 0, T(0, 0) = 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 4, 7, 0, 1, 7, 15, 19, 0, 1, 6, 26, 41, 46, 0, 1, 12, 51, 99, 123, 129, 0, 1, 8, 78, 204, 295, 330, 337, 0, 1, 15, 135, 443, 731, 883, 931, 939, 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581, 0, 1, 18, 328, 1813, 4068, 5868, 6808, 7148, 7228, 7238
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 4, 7;
[4] 0, 1, 7, 15, 19;
[5] 0, 1, 6, 26, 41, 46;
[6] 0, 1, 12, 51, 99, 123, 129;
[7] 0, 1, 8, 78, 204, 295, 330, 337;
[8] 0, 1, 15, 135, 443, 731, 883, 931, 939;
[9] 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581;
-
div := n -> numtheory:-divisors(n):
T := proc(n, k) option remember; local d; if n = 0 then 1 else
add(d * A375467(d, k), d = div(n)) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..10):
-
from functools import cache
@cache
def divisors(n):
return [d for d in range(n, 0, -1) if n % d == 0]
@cache
def T(n, k):
return sum(d * r(d, k) for d in divisors(n)) if n > 0 else 1
@cache
def r(n, k):
if n == 1: return int(k > 0)
return sum(r(i, k) * T(n - i, k - 1) for i in range(1, n)) // (n - 1)
for n in range(9): print([T(n, k) for k in range(n + 1)])
A034781
Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 18, 13, 5, 1, 1, 14, 38, 36, 19, 6, 1, 1, 21, 76, 93, 61, 26, 7, 1, 1, 29, 147, 225, 180, 94, 34, 8, 1, 1, 41, 277, 528, 498, 308, 136, 43, 9, 1, 1, 55, 509, 1198, 1323, 941, 487, 188, 53, 10, 1
Offset: 2
Triangle begins:
1;
1 1;
1 2 1;
1 4 3 1;
1 6 8 4 1;
1 10 18 13 5 1;
1 14 38 36 19 6 1;
thus there are 10 trees with 7 nodes and height 2.
- Alois P. Heinz, Rows n = 2..142, flattened
- Marko Riedel, Counting the number of rooted trees of a certain height
- Marko Riedel, Maple code for sequence (OGF)
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
seq(seq(T(n, k), k=1..n-1), n=2..16); # Alois P. Heinz, Jul 31 2013
-
Drop[Map[Select[#, # > 0 &] &,
Transpose[
Prepend[Table[
f[n_] :=
Nest[CoefficientList[
Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
-
def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)
for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
# Peter Luschny, Aug 30 2024
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003
Showing 1-3 of 3 results.