cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375468 Row sums of A375467.

Original entry on oeis.org

0, 1, 1, 3, 8, 23, 62, 178, 495, 1413, 4015, 11511, 33000, 95079, 274163, 792586, 2294010, 6649760, 19295361, 56048352, 162940687, 474069314, 1380215558, 4020916787, 11720484787, 34181438615, 99733002848, 291122869293, 850134963598, 2483484854325, 7257482455313
Offset: 0

Views

Author

Peter Luschny, Aug 29 2024

Keywords

Crossrefs

Cf. A375467.

A375546 Triangle read by rows: T(n, k) = Sum_{d|n} d * A375467(d, k) for n > 0, T(0, 0) = 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 4, 7, 0, 1, 7, 15, 19, 0, 1, 6, 26, 41, 46, 0, 1, 12, 51, 99, 123, 129, 0, 1, 8, 78, 204, 295, 330, 337, 0, 1, 15, 135, 443, 731, 883, 931, 939, 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581, 0, 1, 18, 328, 1813, 4068, 5868, 6808, 7148, 7228, 7238
Offset: 0

Views

Author

Peter Luschny, Sep 15 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,  3;
  [3] 0, 1,  4,   7;
  [4] 0, 1,  7,  15,  19;
  [5] 0, 1,  6,  26,  41,   46;
  [6] 0, 1, 12,  51,  99,  123,  129;
  [7] 0, 1,  8,  78, 204,  295,  330,  337;
  [8] 0, 1, 15, 135, 443,  731,  883,  931,  939;
  [9] 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581;
		

Crossrefs

Cf. A375467, A000203 (column 2), A209397 (main diagonal), A375547 (row sums).

Programs

  • Maple
    div := n -> numtheory:-divisors(n):
    T := proc(n, k) option remember; local d; if n = 0 then 1 else
    add(d * A375467(d, k), d = div(n)) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..10):
  • Python
    from functools import cache
    @cache
    def divisors(n):
        return [d for d in range(n, 0, -1) if n % d == 0]
    @cache
    def T(n, k):
        return sum(d * r(d, k) for d in divisors(n)) if n > 0 else 1
    @cache
    def r(n, k):
        if n == 1: return int(k > 0)
        return sum(r(i, k) * T(n - i, k - 1) for i in range(1, n)) // (n - 1)
    for n in range(9): print([T(n, k) for k in range(n + 1)])

A034781 Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 18, 13, 5, 1, 1, 14, 38, 36, 19, 6, 1, 1, 21, 76, 93, 61, 26, 7, 1, 1, 29, 147, 225, 180, 94, 34, 8, 1, 1, 41, 277, 528, 498, 308, 136, 43, 9, 1, 1, 55, 509, 1198, 1323, 941, 487, 188, 53, 10, 1
Offset: 2

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1  1;
  1  2  1;
  1  4  3  1;
  1  6  8  4  1;
  1 10 18 13  5  1;
  1 14 38 36 19  6 1;
thus there are 10 trees with 7 nodes and height 2.
		

Crossrefs

T(2n,n) = A245102(n), T(2n+1,n) = A245103(n).
Row sums give A000081.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
         add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 31 2013
  • Mathematica
    Drop[Map[Select[#, # > 0 &] &,
       Transpose[
        Prepend[Table[
          f[n_] :=
           Nest[CoefficientList[
              Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
                0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
    Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
  • Python
    def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)
    for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
    # Peter Luschny, Aug 30 2024

Formula

Reference gives recurrence.
T(n, k) = A375467(n, k) - A375467(n, k - 1). - Peter Luschny, Aug 30 2024

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003
Showing 1-3 of 3 results.