A375517 a(n) = A375516(n)/n.
2, 2, 4, 12, 240, 40200, 1385211600, 1469089808430082650, 1705264091048404496800363077779646800, 2355419752377504356995163180927294204575594409432081035253034399529376520
Offset: 1
Keywords
Examples
The prime factors (without repetition) of the first ten terms are: {2}, {2}, {2}, {2, 3}, {2, 3, 5}, {2, 3, 5, 67}, {2, 3, 5, 67, 5743}, {2, 3, 5, 7, 67, 5743, 1212060151}, {2, 5, 7, 67, 137, 151, 5743, 10867, 1212060151, 5808829669}, {2, 3, 5, 7, 19, 47, 67, 71, 137, 151, 5743, 10867, 1212060151, 5808829669, 243254025696427, 99509446928973841}
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..14
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end: b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end: a:= n-> denom(s(n))/n: seq(a(n), n=1..10); # Alois P. Heinz, Oct 19 2024
-
Mathematica
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])]; b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)]; a[n_] := Denominator[s[n]]/n; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Mar 21 2025, after Alois P. Heinz *)
-
Python
from itertools import count, islice from math import gcd def A375517_gen(): # generator of terms p, q = 0, 1 for k in count(1): m = q//(k*(q-p))+1 p, q = p*k*m+q, k*m*q p //= (r:=gcd(p,q)) q //= r yield q//k A375517_list = list(islice(A375517_gen(),11)) # Chai Wah Wu, Aug 28 2024