cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375572 Numbers occurring at least twice in Bernoulli's triangle A008949.

Original entry on oeis.org

1, 4, 7, 8, 11, 15, 16, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 64, 67, 79, 92, 93, 99, 106, 120, 121, 127, 128, 130, 137, 154, 163, 172, 176, 191, 211, 219, 232, 247, 254, 255, 256, 277, 299, 301, 326, 352, 378, 379, 382, 386, 407, 436, 466, 470, 497, 502
Offset: 1

Views

Author

Pontus von Brömssen, Aug 19 2024

Keywords

Comments

Equivalently, 1 together with numbers occurring in columns k >= 2 of Bernoulli's triangle.

Crossrefs

Programs

  • PARI
    isok(k) = my(nb=0); for (i=0, k, nb += #select(x->(x==k), vector(i+1, j, sum(jj=0, j-1, binomial(i, jj))))); nb >= 2; \\ Michel Marcus, Aug 22 2024
    
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, my(w=vector(n+1, j, sum(jj=0, j-1, binomial(n, jj)))); for (i=1, #w, if (w[i] <= nn, v[w[i]]++));); Vec(select(x->(x>=2), v, 1)); \\ Michel Marcus, Aug 23 2024
    
  • Python
    from math import comb
    from bisect import insort
    def A375572_list(nmax):
        a_list = [1]
        if nmax == 1: return a_list
        nkb_list = [(2,2,4)] # List of triples (n,k,A008949(n,k)), sorted by the last element.
        while 1:
            b0 = nkb_list[0][2]
            a_list.append(b0)
            if len(a_list) == nmax: return a_list
            while 1:
                n,k,b = nkb_list[0]
                if b > b0: break
                del nkb_list[0]
                insort(nkb_list,(n+1,k,2*b-comb(n,k)),key=lambda x:x[2])
                if n == k:
                    insort(nkb_list,(n+1,k+1,2**(k+1)),key=lambda x:x[2])

A375570 Smallest m such that A008949(m,k) = n for some k.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 3, 3, 8, 9, 4, 11, 12, 13, 4, 4, 16, 17, 18, 19, 20, 6, 22, 23, 24, 5, 26, 27, 7, 29, 5, 5, 32, 33, 34, 35, 8, 37, 38, 39, 40, 6, 42, 43, 44, 9, 46, 47, 48, 49, 50, 51, 52, 53, 54, 10, 6, 57, 58, 59, 60, 61, 6, 6, 64, 65, 11, 67, 68, 69, 70
Offset: 1

Views

Author

Pontus von Brömssen, Aug 19 2024

Keywords

Crossrefs

Formula

A008949(a(n),A375571(n)) = n.
a(n) <= n-1.
a(2^n) = n.
a(2^n-1) = n for n >= 2.

A376001 Numbers that can be written as a Narayana number (A001263) in at least 3 ways.

Original entry on oeis.org

1, 105, 1176, 4950, 5713890
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Comments

The first 5 terms are triangular numbers.
a(2), ..., a(5) can all be written as a Narayana number in exactly 4 ways.
a(6) > 2*10^35 (if it exists).

Examples

			With T(n,k) = A001263(n,k):
      105 = T( 7,3) = T( 7, 5) = T(  15,2) = T(  15,  14);
     1176 = T( 9,4) = T( 9, 6) = T(  49,2) = T(  49,  48);
     4950 = T(11,4) = T(11, 8) = T( 100,2) = T( 100,  99);
  5713890 = T(92,3) = T(92,90) = T(3381,2) = T(3381,3380).
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from bisect import insort
    from itertools import islice
    def A010054(n):
        return isqrt(m:=8*n+1)**2 == m
    def A376001_generator():
        yield 1
        nkN_list = [(5, 3, 20)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            c = 0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0:
                    if c >= 3 or A010054(N0): yield N0
                    break
                central = n==2*k-1
                c += 2-central
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if central:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A376001_list(nmax):
        return list(islice(A376001_generator(),nmax))
Showing 1-3 of 3 results.