A375574
Let d(1)
1, 6, 6, 28, 28, 24, 126, 234, 224, 360, 504, 980, 990, 1260, 1764, 1680, 840, 1080, 4140, 960, 5760, 4620, 9180, 11088, 8960, 6120, 11880, 25740, 7140, 2520, 2016, 25344, 9720, 48672, 11760, 10920, 15120, 14112, 61740, 55200, 74340, 91800, 8190, 78624, 70200
Offset: 1
Keywords
Examples
*----*------*---------*---------------------------------* | n | a(n) | i | i-th | sum of n first divisors | | | | | divisor | of a(n) | *----*------*---------*---------------------------------* | 2 | 6 | 3 | 3 | 1+2 = 3 | *----*------*----*---------*----------------------------* | 3 | 6 | 4 | 6 | 1+2+3 = 6 | *----*------*----*---------*----------------------------* | 4 | 28 | 5 | 14 | 1+2+4+7 = 14 | *----*------*----*---------*----------------------------* | 5 | 28 | 6 | 28 | 1+2+4+7+14 = 28 | *----*------*----*---------*----------------------------* | 6 | 24 | 8 | 24 | 1+2+3+4+6+8 = 24 | *----*------*----*---------*----------------------------* | 7 | 126 | 10 | 42 | 1+2+3+6+7+9+14 = 42 | *----*------*----*---------*----------------------------* | 8 | 234 | 10 | 78 | 1+2+3+6+9+13+18+26 = 78 | *----*------*----*---------*----------------------------* | 9 | 224 | 11 | 112 | 1+2+4+7+8+14+16+28+32 = 112| |----*------*----*---------*----------------------------*
Links
- David A. Corneth, PARI program
Programs
-
Maple
with(numtheory):nn:=10^6:T:=array(1..44):i:=0: for n from 2 to 45 do: ii:=1: for a from 6 to nn while ii=1 do: d:=divisors(a):n0:=nops(d): if n0>=n then s:=sum('d[j]', 'j'=1..n): for m from 1 to n0 do: if s=d[m] then ii:=0:printf(`%d %d\n`,n,a):i:=i+1:T[i]:=a: else fi : od :fi: od:od:print(T):
-
PARI
\\ See Corneth link
-
Python
from sympy import divisors from itertools import count, islice def agen(): # generator of terms adict, n = dict(), 1 for k in count(1): d = divisors(k) if len(d) < n-1: continue dset, s = set(d), 0 for i, di in enumerate(d, 1): s += di if i >= n and i not in adict and s in dset: adict[i] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 20 2024
Extensions
a(1) = 1 prepended by David A. Corneth, Aug 20 2024
Comments