cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375574 Let d(1)

Original entry on oeis.org

1, 6, 6, 28, 28, 24, 126, 234, 224, 360, 504, 980, 990, 1260, 1764, 1680, 840, 1080, 4140, 960, 5760, 4620, 9180, 11088, 8960, 6120, 11880, 25740, 7140, 2520, 2016, 25344, 9720, 48672, 11760, 10920, 15120, 14112, 61740, 55200, 74340, 91800, 8190, 78624, 70200
Offset: 1

Views

Author

Michel Lagneau, Aug 19 2024

Keywords

Comments

The index i of s among the divisors of k is i = A375593(n), i.e. s = d(A375593(n)).

Examples

			*----*------*---------*---------------------------------*
| n  | a(n) |  i |  i-th   |  sum of n first divisors   |
|    |      |    | divisor |         of a(n)            |
*----*------*---------*---------------------------------*
| 2  |   6  |  3 |    3    | 1+2 = 3                    |
*----*------*----*---------*----------------------------*
| 3  |   6  |  4 |    6    | 1+2+3 = 6                  |
*----*------*----*---------*----------------------------*
| 4  |  28  |  5 |   14    | 1+2+4+7 = 14               |
*----*------*----*---------*----------------------------*
| 5  |  28  |  6 |   28    | 1+2+4+7+14 = 28            |
*----*------*----*---------*----------------------------*
| 6  |  24  |  8 |   24    | 1+2+3+4+6+8 = 24           |
*----*------*----*---------*----------------------------*
| 7  | 126  | 10 |   42    | 1+2+3+6+7+9+14 = 42        |
*----*------*----*---------*----------------------------*
| 8  | 234  | 10 |   78    | 1+2+3+6+9+13+18+26 = 78    |
*----*------*----*---------*----------------------------*
| 9  | 224  | 11 |  112    | 1+2+4+7+8+14+16+28+32 = 112|
|----*------*----*---------*----------------------------*
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^6:T:=array(1..44):i:=0:
    for n from 2 to 45 do:
     ii:=1:
      for a from 6 to nn while ii=1
    do:
        d:=divisors(a):n0:=nops(d):
         if n0>=n
          then
           s:=sum('d[j]', 'j'=1..n):
           for m from 1 to n0 do:
            if s=d[m]
             then
              ii:=0:printf(`%d %d\n`,n,a):i:=i+1:T[i]:=a:
               else
              fi :
            od :fi:
      od:od:print(T):
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def agen(): # generator of terms
        adict, n = dict(), 1
        for k in count(1):
            d = divisors(k)
            if len(d) < n-1: continue
            dset, s = set(d), 0
            for i, di in enumerate(d, 1):
                s += di
                if i >= n and i not in adict and s in dset: adict[i] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 20 2024

Extensions

a(1) = 1 prepended by David A. Corneth, Aug 20 2024