A375662
Expansion of e.g.f. 1 / (1 - x^2 * (exp(x) - 1))^2.
Original entry on oeis.org
1, 0, 0, 12, 24, 40, 2220, 15204, 70672, 1723824, 22710420, 202577980, 3841065624, 71221859592, 994632663388, 19005155049300, 421055077585440, 8033764197776224, 172109549363348772, 4285658639255113836, 101794836650015825320, 2516190299149752959160
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*(exp(x)-1))^2))
-
a(n) = n!*sum(k=0, n\3, (k+1)!*stirling(n-2*k, k, 2)/(n-2*k)!);
A375679
Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^3.
Original entry on oeis.org
1, 0, 0, 18, 36, 120, 4860, 33264, 241920, 5598720, 72364320, 879500160, 18172978560, 331463508480, 5726430597888, 126134466796800, 2836325702246400, 62773403361177600, 1562890149787392000, 41009994647421972480, 1090182759179092992000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^3))
-
a(n) = n!*sum(k=0, n\3, (k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/2;
A376439
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^2*(exp(x) - 1))^3 ).
Original entry on oeis.org
1, 0, 0, 18, 36, 60, 23850, 189126, 988008, 184207176, 3254640750, 35132272890, 4418970811596, 134653558474188, 2463781708180338, 246532610826062190, 11098269938629561680, 305828547775319369616, 27016544700449293891158
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2*(exp(x)-1))^3)/x))
-
a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*stirling(n-2*k, k, 2)/(n-2*k)!)/(3*n+3)!;
Showing 1-3 of 3 results.