A375681
Expansion of e.g.f. 1 / (1 + x * log(1 - x^2))^3.
Original entry on oeis.org
1, 0, 0, 18, 0, 180, 4320, 5040, 241920, 3900960, 19958400, 622702080, 9580032000, 112086374400, 3013462932480, 52540488000000, 977094287769600, 25683596370432000, 540291743902310400, 13061642656398336000, 360218657273739264000, 9111103133582241792000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^2))^3))
-
a(n) = n!*sum(k=0, n\2, (n-2*k+2)!*abs(stirling(k, n-2*k, 1))/k!)/2;
A375806
Expansion of e.g.f. 1/(1 + (log(1 - x^2))/x)^2.
Original entry on oeis.org
1, 2, 6, 30, 192, 1520, 14220, 153720, 1881600, 25728192, 388402560, 6415960320, 115078138560, 2227056923520, 46247253212160, 1025696098627200, 24195406204569600, 604862279807385600, 15973029429800002560, 444299711254300661760, 12983645995613669376000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x^2)/x)^2))
-
a(n) = n!*sum(k=0, n\2, (n-2*k+1)!*abs(stirling(n-k, n-2*k, 1))/(n-k)!);
A376441
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x^2))^2 ).
Original entry on oeis.org
1, 0, 0, 12, 0, 120, 10800, 3360, 766080, 56064960, 76507200, 12988926720, 885913459200, 3162288729600, 477701680135680, 31728803730624000, 230820218044416000, 32828647402065715200, 2173902177236319129600, 27658882036996206796800, 3801535675181689116672000, 255228267875636473786368000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x^2))^2)/x))
-
a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*abs(stirling(k, n-2*k, 1))/k!)/(2*n+2)!;
Showing 1-3 of 3 results.