cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375769 The indices of the terms of A375768 in the Fibonacci sequence.

Original entry on oeis.org

0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2024

Keywords

Comments

First differs from A375767 at n = 2448.
Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], A130233[e], Nothing]]; s[1] = 0; Array[s, 100]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1;}
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(isfib(e), print1(A130233(e), ", ")));}

Formula

a(n) = A130233(A375768(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (2/zeta(2) + Sum_{k>=3} k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 2.4999593748274972257073..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is (1/zeta(2) + Sum_{k>=3} k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.85639269500896710302009... .

A382422 The product of exponents in the prime factorization of the biquadratefree numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2025

Keywords

Comments

Differs from A375766 and A375768 at n = 1, 31, 34, 35, 38, 39, ... .
All the terms are 3-smooth numbers (A003586).

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 2]]; biqFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 4; s /@ Select[Range[100], biqFreeQ]
  • PARI
    list(kmax) = {my(e); print1(1, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecmax(e) < 4, print1(vecprod(e), ", "))); }

Formula

a(n) = A005361(A046100(n)).
a(n) = 2^A382423(n) * 3^A382424(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 3/p^4) = 1.57226906210272200398... .
In general, the asymptotic mean of the product of exponents in the prime factorization of the k-free numbers (numbers that are not divisible by a k-th power other than 1), for k >= 2, is zeta(k) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + ... + 1/p^(k-1) - (k-1)/p^k). For k = 2 (squarefree numbers), the mean is 1 since the sequence contains only 1's. The limit when k->oo is zeta(2)*zeta(3)/zeta(6) (A082695).

A375766 The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2024

Keywords

Comments

First differs from A375768 at n = 2448.
All the terms are Fibonacci numbers by definition.

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], Max[e], Nothing]]; s[1] = 0; Array[s, 100]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(vecmax(e), ", ")));}

Formula

a(n) = A051903(A115063(n)).
a(n) = A000045(A375767(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (d(k) - d(k-1)))) / A375274 = 1.52546070254904121983..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).
Showing 1-3 of 3 results.