cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375824 Triangular numbers whose sum of digits is 9.

Original entry on oeis.org

36, 45, 153, 171, 351, 630, 1035, 1431, 2016, 3240, 3321, 4005, 8001, 10440, 13041, 13203, 16110, 21321, 23220, 25200, 101025, 105111, 114003, 222111, 320400, 321201, 1010331, 1241100, 1313010, 1400301, 2013021, 2031120, 2410110, 4020030, 10006101, 11203011, 20012301, 32004000, 32012001, 33020001
Offset: 1

Views

Author

Robert Israel, Aug 30 2024

Keywords

Comments

Infinite subsequences include 2 * 10^(2*k) + 13 * 10^k + 21, 2 * 10^(2*k) + 31 * 10^k + 120, 32 * 10^(2*k) + 4 * 10^k, and 32 * 10^(2*k) + 12 * 10^k + 1.
Conjecture: the last term not of one of those subsequences is a(53) = 210010000005.

Examples

			a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9.
		

Crossrefs

Intersection of A000217 and A052223. Contained in A117404 and A076713.

Programs

  • Maple
    F:= proc(d,s) option remember;
    # d-digit numbers with sum of digits s
          local R,i;
          R:= {};
          for i from 0 to min(s,9) do
            R:= R union map(t -> 10*t+i, procname(d-1,s-i))
          od;
          R
    end proc:
    F(1,0):= {}:
    for i from 1 to 9 do F(1,i):= {i} od:
    sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d,9)),d=1..12)),list));
  • Mathematica
    Select[Range[10000](Range[10000]+1)/2,DigitSum[#]==9 &] (* Stefano Spezia, Sep 01 2024 *)
  • PARI
    select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ Michel Marcus, Aug 31 2024