A375824 Triangular numbers whose sum of digits is 9.
36, 45, 153, 171, 351, 630, 1035, 1431, 2016, 3240, 3321, 4005, 8001, 10440, 13041, 13203, 16110, 21321, 23220, 25200, 101025, 105111, 114003, 222111, 320400, 321201, 1010331, 1241100, 1313010, 1400301, 2013021, 2031120, 2410110, 4020030, 10006101, 11203011, 20012301, 32004000, 32012001, 33020001
Offset: 1
Examples
a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9.
Links
- Robert Israel, Table of n, a(n) for n = 1..95
Programs
-
Maple
F:= proc(d,s) option remember; # d-digit numbers with sum of digits s local R,i; R:= {}; for i from 0 to min(s,9) do R:= R union map(t -> 10*t+i, procname(d-1,s-i)) od; R end proc: F(1,0):= {}: for i from 1 to 9 do F(1,i):= {i} od: sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d,9)),d=1..12)),list));
-
Mathematica
Select[Range[10000](Range[10000]+1)/2,DigitSum[#]==9 &] (* Stefano Spezia, Sep 01 2024 *)
-
PARI
select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ Michel Marcus, Aug 31 2024
Comments