A375874 Number of distinct n X n patterns in the squiral tiling.
1, 2, 14, 70, 126, 270, 438, 630, 790, 958, 1134, 1542, 1974, 2430, 2910, 3414, 3942, 4494, 5070, 5670, 6142, 6622, 7110, 7606, 8110, 8622, 9142, 9670, 10206, 11406, 12630, 13878, 15150, 16446, 17766, 19110, 20478, 21870, 23286, 24726, 26190, 27678, 29190
Offset: 0
Keywords
Examples
a(1) = 2, since there are 2 different 1X1 patterns in the squiral tiling; namely 0 and 1. a(2) = 14, since there are 14 different 2X2 patterns in the squiral tiling; namely all 16 2X2 binary matrices except [[0,0],[0,0]] and [[1,1],[1,1]].
References
- M. Baake, and U. Grimm, Aperiodic Order. Volume 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications No. 149 Cambridge University Press, Cambridge (2013).
- B. Grünbaum and F. C. Shephard, Tilings and Patterns, W.H. Freeman 1987, MR0857454.
Links
- Johan Nilsson, Table of n, a(n) for n = 0..10000
- Tilings Encyclopedia, Squiral
- Johan Nilsson The Pattern Complexity of the Squiral Tiling
Programs
-
Maple
a:= n-> `if`(n<3, [1, 2, 14][n+1], ((A, B)-> (4+8*A-8*B)*(n-1)^2+ (12*3^A+24*3^B)*(n-1)-18*9^A)(ilog[3](n-2), ilog[3]((n-2)/2))): seq(a(n), n=0..42); # Alois P. Heinz, Sep 18 2024
-
Mathematica
a[n_] := If[n<3, {1, 2, 14}[[n+1]], With[{A = Floor@ Log[3, n-2], B = Floor@ Log[3, (n-2)/2]}, (4+8*A-8*B)*(n-1)^2+(12*3^A+24*3^B)*(n-1)-18*9^A]]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 27 2025, after Alois P. Heinz *)
-
PARI
a(n)=if(n<4, [1,2,14,70][n+1], my(A=logint(n-2,3), B=logint((n-2)\2,3)); (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A) \\ Andrew Howroyd, Sep 18 2024
-
Python
from sympy import integer_log def A375874(n): if n<4: return (1,2,14,70)[n] a, b = integer_log(n-2,3)[0]+1, integer_log((n>>1)-1,3)[0]+1 return (n-1)*((1+(a-b<<1))*(n-1)+((c:=3**a)+(3**b<<1))<<1)-c**2<<1 # Chai Wah Wu, Sep 18 2024
Formula
a(n) = (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A, for n>=4 where A = floor(log3(n-2)), B = floor(log3((n-2)/2)), and log3 is the logarithm in base 3.
For n>=2;
a(3*n-2) = 9*a(n),
a(9*n-7) = 5*a(3*n+1) - 16*a(3*n) + 20*a(3*n-1),
a(9*n-4) = - a(3*n+1) + 5*a(3*n) + 5*a(3*n-1),
a(9*n-1) = 2*a(3*n+1) + 8*a(3*n) - a(3*n-1),
a(3*n) = a(3*n-1) + 3*a(n+1) - 3*a(n).
Comments