cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375874 Number of distinct n X n patterns in the squiral tiling.

Original entry on oeis.org

1, 2, 14, 70, 126, 270, 438, 630, 790, 958, 1134, 1542, 1974, 2430, 2910, 3414, 3942, 4494, 5070, 5670, 6142, 6622, 7110, 7606, 8110, 8622, 9142, 9670, 10206, 11406, 12630, 13878, 15150, 16446, 17766, 19110, 20478, 21870, 23286, 24726, 26190, 27678, 29190
Offset: 0

Views

Author

Johan Nilsson, Sep 01 2024

Keywords

Comments

The squiral tiling, can be obtained as the limit pattern under the binary block substitution 0 -> [[1,0,1],[0,0,0][1,0,1]] and 1 -> [[0,1,0],[1,1,1][0,1,0]], when starting with the seed 0.

Examples

			a(1) = 2, since there are 2 different 1X1 patterns in the squiral tiling; namely 0 and 1.
a(2) = 14, since there are 14 different 2X2 patterns in the squiral tiling; namely all 16 2X2 binary matrices except [[0,0],[0,0]] and [[1,1],[1,1]].
		

References

  • M. Baake, and U. Grimm, Aperiodic Order. Volume 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications No. 149 Cambridge University Press, Cambridge (2013).
  • B. Grünbaum and F. C. Shephard, Tilings and Patterns, W.H. Freeman 1987, MR0857454.

Programs

  • Maple
    a:= n-> `if`(n<3, [1, 2, 14][n+1], ((A, B)-> (4+8*A-8*B)*(n-1)^2+
        (12*3^A+24*3^B)*(n-1)-18*9^A)(ilog[3](n-2), ilog[3]((n-2)/2))):
    seq(a(n), n=0..42);  # Alois P. Heinz, Sep 18 2024
  • Mathematica
    a[n_] := If[n<3, {1, 2, 14}[[n+1]], With[{A = Floor@ Log[3, n-2], B = Floor@ Log[3, (n-2)/2]}, (4+8*A-8*B)*(n-1)^2+(12*3^A+24*3^B)*(n-1)-18*9^A]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 27 2025, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<4, [1,2,14,70][n+1], my(A=logint(n-2,3), B=logint((n-2)\2,3)); (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A) \\ Andrew Howroyd, Sep 18 2024
    
  • Python
    from sympy import integer_log
    def A375874(n):
        if n<4: return (1,2,14,70)[n]
        a, b = integer_log(n-2,3)[0]+1, integer_log((n>>1)-1,3)[0]+1
        return (n-1)*((1+(a-b<<1))*(n-1)+((c:=3**a)+(3**b<<1))<<1)-c**2<<1 # Chai Wah Wu, Sep 18 2024

Formula

a(n) = (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A, for n>=4 where A = floor(log3(n-2)), B = floor(log3((n-2)/2)), and log3 is the logarithm in base 3.
For n>=2;
a(3*n-2) = 9*a(n),
a(9*n-7) = 5*a(3*n+1) - 16*a(3*n) + 20*a(3*n-1),
a(9*n-4) = - a(3*n+1) + 5*a(3*n) + 5*a(3*n-1),
a(9*n-1) = 2*a(3*n+1) + 8*a(3*n) - a(3*n-1),
a(3*n) = a(3*n-1) + 3*a(n+1) - 3*a(n).