cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052851 Expansion of e.g.f. 1/2 - (1/2)*(1+4*log(1-x))^(1/2).

Original entry on oeis.org

0, 1, 3, 20, 220, 3424, 69008, 1706256, 49956240, 1689497376, 64799254752, 2778906776832, 131756614920192, 6843405231815424, 386414606189283072, 23567401521343170048, 1543994621969805135360, 108137637714495023354880, 8062825821198926369725440
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(B,C),C=Sequence(S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/2-1/2*(1+4*Log[1-x])^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • Maxima
    a(n):=sum(stirling1(n,k)*k!*binomial(2*k-2,k-1)/k*(-1)^(n+k), k,1,n); /* Vladimir Kruchinin, May 12 2012 */

Formula

E.g.f.: 1/2 - (1/2)*(1-4*log(-1/(-1+x)))^(1/2).
a(n) = Sum_{k=1..n} Stirling1(n,k)*k!*C(2*k-2,k-1)/k*(-1)^(n+k). - Vladimir Kruchinin, May 12 2012
a(n) ~ n^(n-1)/(sqrt(2)*exp(3*n/4)*(exp(1/4)-1)^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
From Seiichi Manyama, Sep 09 2024: (Start)
E.g.f. satisfies A(x) = (-log(1 - x)) / (1 - A(x)).
E.g.f.: Series_Reversion( 1 - exp(-x * (1 - x)) ). (End)

Extensions

New name using e.g.f., Vaclav Kotesovec, Sep 30 2013

A376041 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) / (1 - A(x)).

Original entry on oeis.org

0, 1, 9, 191, 6496, 305164, 18317390, 1339293822, 115492112640, 11476262240520, 1291250885222592, 162271449317302632, 22528350072978189600, 3424249337820235241472, 565573503590604522245136, 100864333223422171393303488, 19317041144591537348567168256
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x * (1 - x))) ).

A371327 E.g.f. satisfies A(x) = -log(1 - x/(1 - A(x)))/(1 - A(x)).

Original entry on oeis.org

0, 1, 5, 59, 1128, 29954, 1019282, 42318296, 2074276320, 117237652008, 7506386360232, 536983774338120, 42447806791009056, 3674351246886880416, 345667310491536157056, 35116581800947400780928, 3831441153568328284066560, 446832269484565155280539264
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n+2*k-2)!/(n+k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (n+2*k-2)!/(n+k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x) * (1 - exp(-x * (1 - x))) ). - Seiichi Manyama, Sep 08 2024

A376067 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) * (1 - A(x)).

Original entry on oeis.org

0, 1, 3, 26, 372, 7424, 190150, 5946576, 219643592, 9357076704, 451643892408, 24359462797680, 1451906224395792, 94769186402062080, 6723078079388867040, 515064037555614081024, 42380187502270667120640, 3727409807764337879016960
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (2*n-2)!/(2*n-k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (2*n-2)!/(2*n-k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x / (1 - x))) ).
Showing 1-4 of 4 results.