cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376177 Triangle, read by rows, where T(n,k) = T(n-1,k-1) + 2*T(n,k-1) when k > 0, else T(n,0) = T(n-1,n-1) when n > 0, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 3, 3, 7, 17, 17, 37, 81, 179, 179, 375, 787, 1655, 3489, 3489, 7157, 14689, 30165, 61985, 127459, 127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137, 8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043, 1195313043, 2399499223, 4816872179, 9669750231, 19412036179, 38970206423, 78234836403, 157062892759, 315321098561, 315321098561
Offset: 0

Views

Author

George Plousos and Paul D. Hanna, Sep 22 2024

Keywords

Comments

This triangle was found by George Plousos while exploring a variation of Aitken's array (A011971).

Examples

			G.f.: A(x,y) = 1 + (3*y + 1)*x + (17*y^2 + 7*y + 3)*x^2 + (179*y^3 + 81*y^2 + 37*y + 17)*x^3 + (3489*y^4 + 1655*y^3 + 787*y^2 + 375*y + 179)*x^4 + (127459*y^5 + 61985*y^4 + 30165*y^3 + 14689*y^2 + 7157*y + 3489)*x^5 + (8873137*y^6 + 4372839*y^5 + 2155427*y^4 + 1062631*y^3 + 523971*y^2 + 258407*y + 127459)*x^6 + ...
which is defined by A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y),
where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443,
B(x) = 1 + x + 3*x^2 + 17*x^3 + 179*x^4 + 3489*x^5 + 127459*x^6 + 8873137*x^7 + 1195313043*x^8 + 315321098561*x^9 + ... + A126443(n)*x^n + ...
This triangle begins
  1,
  1, 3,
  3, 7, 17,
  17, 37, 81, 179,
  179, 375, 787, 1655, 3489,
  3489, 7157, 14689, 30165, 61985, 127459,
  127459, 258407, 523971, 1062631, 2155427, 4372839, 8873137,
  8873137, 17873733, 36005873, 72535717, 146134065, 294423557, 593219953, 1195313043,
  ...
		

Crossrefs

Programs

  • PARI
    {A126443(n) = if(n==0, 1, sum(k=0, n-1, binomial(n-1, k) * 2^k * A126443(k)))}
    {T(n,k) = sum(j=0,k, binomial(k,j) * 2^j * A126443(n-k+j) )}
    for(n=0,10, for(k=0,n, print1(T(n,k),", ")); print(""))

Formula

If k > 0, T(n,k) = T(n-1,k-1) + 2*T(n,k-1), else if n > 0, T(n,0) = T(n-1,n-1), with T(0,0) = 1.
T(n,k) = Sum_{j=0..k} binomial(k,j) * 2^j * A126443(n-k+j), where A126443(m) = Sum_{k=0..m-1} binomial(m-1, k) * 2^k * A126443(k) for m > 0 with A126443(0) = 1.
G.f. A(x,y) = (B(x) - 2*(B(x*y) - 1)/x) / (1 - (2+x)*y), where B(x) = 1 + x*B( 2*x/(1-x) )/(1-x) is the g.f. B(x) for A126443 given therein by Ilya Gutkovskiy.