A376183 The number of solutions x<=y<=z in Z/(n) of the equation x+y+z = x*y*z.
1, 3, 2, 4, 7, 8, 10, 13, 13, 31, 24, 20, 37, 44, 38, 47, 59, 59, 66, 86, 53, 108, 96, 77, 137, 171, 100, 120, 159, 186, 170, 179, 135, 279, 230, 172, 253, 312, 220, 337, 307, 259, 322, 306, 331, 456, 384, 303, 369, 669, 366, 500, 503, 488, 588, 469, 409, 767, 600
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..8450 (terms 1..2000 from Hugo Pfoertner)
Programs
-
Maple
a:=proc(n) local x,y,z,w,N; N:=0: for x from 0 to n-1 do for y from x to n-1 do for z from y to n-1 do if (x+y+z-x*y*z) mod n = 0 then N:=N + 1; fi; od: od: od: N; end:
-
PARI
a(n) = sum(x=0, n-1, sum(y=x, n-1, sum(z=y, n-1, Mod(x+y+z-x*y*z, n)==0))); \\ Michel Marcus, Sep 15 2024
-
Python
def A376183(n): c = 0 for x in range(n): for y in range(x,n): xy,xyp = x*y%n-1,(x+y)%n c += sum(not (xy*z-xyp)%n for z in range(y,n)) return c # Chai Wah Wu, Sep 19 2024
Extensions
More terms from Hugo Pfoertner, Sep 15 2024
Comments