A373435
Iterate the function x <- phi(sigma(x)). The sequence lists the smaller member of cycles of length 2.
Original entry on oeis.org
4, 48, 72, 432, 1728, 10368, 184320, 1658880, 6220800, 10222080, 12856320000
Offset: 1
phi(sigma(4)) = 6 and phi(sigma(6)) = 4, so 4 (the smallest term) is in the sequence.
-
Select[Range[10^6], # == EulerPhi[DivisorSigma[1,EulerPhi[DivisorSigma[1,#]]]] && # < EulerPhi[DivisorSigma[1,#]]&] (* Stefano Spezia, Jun 07 2024 *)
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, x == eulerphi(sigma(y))); \\ Michel Marcus, Jun 06 2024
A373453
Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 3.
Original entry on oeis.org
16, 1200, 15552, 67392, 272160, 69672960000
Offset: 1
16 -> 30 -> 24 -> 16, so 16 (the smallest term) is in the sequence.
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z > x, x == eulerphi(sigma(z)))); \\ Michel Marcus, Jun 07 2024
A373454
Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 4.
Original entry on oeis.org
576, 41472, 2142720000, 3233260800
Offset: 1
576 -> 1512 -> 1280 -> 864 -> 576, so 576 (the smallest term) is in the sequence.
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z>x, x == eulerphi(sigma(eulerphi(sigma(z)))))); \\ Michel Marcus, Jun 07 2024
Showing 1-3 of 3 results.
Comments