cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376385 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x*log(1-x))^2 ).

Original entry on oeis.org

1, 0, 4, 6, 280, 1620, 67788, 844200, 36344992, 752867136, 34869857040, 1039132179360, 52776841318848, 2066262237673920, 115959403155851136, 5617102749187849920, 348802585405252070400, 20063354348482794961920, 1375625132090917881338880
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x*log(1-x))^2)/x))
    
  • PARI
    a(n) = 2*n!*sum(k=0, n\2, (2*n+k+1)!*abs(stirling(n-k, k, 1))/(n-k)!)/(2*n+2)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 + x*A(x) * log(1 - x*A(x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A371230.
a(n) = (2 * n!/(2*n+2)!) * Sum_{k=0..floor(n/2)} (2*n+k+1)! * |Stirling1(n-k,k)|/(n-k)!.

A376387 Expansion of e.g.f. ( (1/x) * Series_Reversion( x*(1 + x*log(1-x))^3 ) )^(2/3).

Original entry on oeis.org

1, 0, 4, 6, 376, 2220, 125028, 1614480, 92285856, 2018520000, 121850616240, 3907998135360, 253836993367296, 10891474747433280, 768302761361304960, 41447634607068318720, 3187906294983450762240, 206982374312337802536960, 17368877655215923728595968
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(1+x*log(1-x))^3)/x)^(2/3)))
    
  • PARI
    a(n) = 2*n!*sum(k=0, n\2, (3*n+k+1)!*abs(stirling(n-k, k, 1))/(n-k)!)/(3*n+2)!;

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A371232.
a(n) = (2 * n!/(3*n+2)!) * Sum_{k=0..floor(n/2)} (3*n+k+1)! * |Stirling1(n-k,k)|/(n-k)!.

A376437 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^3 ).

Original entry on oeis.org

1, 0, 0, 18, 36, 120, 24300, 192024, 1572480, 194205600, 3380922720, 50671716480, 4879442177280, 144175221440640, 3391736273557632, 287077095515548800, 12328722259931750400, 413067654425986560000, 33216197499043235527680
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^3)/x))
    
  • PARI
    a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(3*n+3)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 + x^2*A(x)^2 * log(1 - x*A(x)))^3.
a(n) = (3 * n!/(3*n+3)!) * Sum_{k=0..floor(n/3)} (3*n+k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
Showing 1-3 of 3 results.