cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A376621 Decimal expansion of a constant related to the asymptotics of A369557 and A376580.

Original entry on oeis.org

2, 7, 5, 1, 0, 8, 5, 0, 9, 0, 8, 8, 8, 9, 1, 9, 9, 3, 9, 4, 3, 4, 2, 0, 4, 9, 6, 2, 0, 4, 8, 9, 4, 7, 0, 3, 6, 4, 1, 8, 1, 7, 8, 6, 0, 2, 6, 3, 7, 1, 7, 5, 0, 9, 8, 2, 8, 1, 1, 3, 2, 5, 9, 3, 9, 3, 2, 9, 1, 3, 8, 2, 2, 8, 4, 0, 1, 1, 7, 9, 3, 5, 6, 5, 7, 6, 2, 5, 2, 6, 2, 6, 0, 8, 7, 8, 2, 8, 0, 4, 9, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Examples

			2.75108509088891993943420496204894703641817860263717...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^Sqrt[3*Log[r]^2/2 + 4*PolyLog[2, r^(1/2)] - Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)

Formula

Equals limit_{n->infinity} A369557(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376580(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376542(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376623(n)^(1/sqrt(n)).
Equals exp(sqrt(3*log(r)^2/2 + 4*polylog(2, r^(1/2)) - Pi^2/3)), where r = A088559 = 0.465571231876768026656731... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024

A376658 Decimal expansion of a constant related to the asymptotics of A376624 and A376625.

Original entry on oeis.org

8, 4, 6, 0, 1, 8, 7, 2, 4, 4, 2, 5, 2, 9, 6, 4, 8, 0, 9, 7, 5, 2, 3, 0, 0, 0, 9, 8, 8, 8, 9, 1, 7, 5, 9, 4, 3, 3, 5, 4, 7, 0, 6, 3, 5, 9, 5, 1, 0, 1, 4, 3, 6, 7, 6, 2, 2, 8, 2, 1, 1, 5, 8, 9, 0, 4, 3, 2, 1, 4, 9, 8, 2, 7, 8, 2, 6, 0, 7, 4, 4, 5, 0, 9, 6, 6, 7, 2, 6, 4, 2, 9, 6, 3, 0, 6, 8, 0, 4, 9, 8, 4, 4, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 01 2024

Keywords

Examples

			8.46018724425296480975230009888917594335470635951014367622821158904321498...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(Sqrt[2*Log[r]^2 + 4*PolyLog[2, Sqrt[r]]]) /. r -> 1/(2*Sqrt[3/(4 + ((155 - 3*Sqrt[849])/2)^(1/3) + ((155 + 3*Sqrt[849])/2)^(1/3))]) - Sqrt[8/3 - ((155 - 3*Sqrt[849])/2)^(1/3)/3 - ((155 + 3*Sqrt[849])/2)^(1/3)/3 + 2*Sqrt[3/(4 + ((155 - 3*Sqrt[849])/2)^(1/3) + ((155 + 3*Sqrt[849])/2)^(1/3))]]/2, 10, 105][[1]]

Formula

Equals exp(sqrt(2*(log(r)^2 + 2*polylog(2, sqrt(r))))), where r = A072223 = 0.52488859865640479389948613854128391569... is the smallest real root of the equation (1 - r^2)^2 = r.
Equals limit_{n->infinity} A376624(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376625(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A377075(n)^(1/sqrt(n)).
Equals exp(2*sqrt(2*log(A356032)^2 + polylog(2, A356032))).

A376660 Decimal expansion of a constant related to the asymptotics of A376630 and A376631.

Original entry on oeis.org

2, 0, 4, 5, 3, 9, 0, 6, 9, 1, 8, 5, 2, 0, 5, 0, 6, 3, 9, 8, 9, 3, 7, 0, 4, 2, 4, 4, 3, 4, 2, 6, 0, 1, 2, 5, 2, 2, 6, 5, 9, 4, 8, 7, 9, 3, 4, 6, 7, 8, 3, 3, 1, 8, 7, 9, 9, 4, 6, 6, 2, 8, 7, 0, 9, 3, 4, 4, 5, 5, 6, 1, 7, 3, 3, 7, 1, 1, 0, 7, 1, 3, 9, 6, 9, 8, 9, 2, 2, 1, 6, 4, 8, 1, 4, 2, 5, 3, 9, 5, 2, 5, 2, 8, 0, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 01 2024

Keywords

Examples

			2.045390691852050639893704244342601252265948793467833187994662870934455617...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^Sqrt[3*Log[r]^2/4 + 2*PolyLog[2, r^(1/2)] - Pi^2/6] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)

Formula

Equals limit_{n->infinity} A376630(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376631(n)^(1/sqrt(n)).
Equals A376815^(1/2). - Vaclav Kotesovec, Oct 06 2024
Equals exp(sqrt(3*log(r)^2/4 + 2*polylog(2, r^(1/2)) - Pi^2/6)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024

A376626 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j-1))^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 3, 6, 3, 3, 7, 7, 6, 6, 9, 13, 12, 11, 16, 18, 17, 20, 22, 26, 28, 31, 36, 36, 42, 46, 50, 57, 61, 69, 72, 75, 87, 97, 100, 108, 126, 136, 141, 151, 167, 188, 195, 207, 233, 254, 265, 279, 315, 339, 355, 380, 417, 455, 473, 503, 551, 600, 627, 667, 730
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k - 1))*(1 + x^(2*k - 1))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (1 + x^(2*j-1))^2 * x^j.
a(n) ~ c * A376659^sqrt(n) / sqrt(n), where c = sqrt(1/14 + sinh(arcsinh(75*sqrt(69)/2)/3)/(7*sqrt(69))) = 0.3792934340515155206194952273079851598271882968396...

A376627 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 3, 0, 3, 1, 3, 2, 4, 4, 3, 8, 2, 10, 2, 14, 2, 19, 3, 20, 7, 23, 11, 26, 17, 25, 26, 27, 35, 29, 48, 27, 64, 28, 81, 30, 98, 32, 119, 37, 139, 47, 159, 59, 183, 77, 199, 105, 217, 137, 237, 180, 251, 232, 266, 292, 281, 364, 293, 447, 309, 540, 331, 645, 350
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k))*(1 + x^(2*k))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (1 + x^(2*j))^2 * x^j.
a(n) ~ c * A376659^sqrt(n) / sqrt(n), where c = sqrt(5/168 + sqrt(11/23) * cosh(arccosh(17*sqrt(23)/(2*11^(3/2)))/3)/21) = 0.2512284115765342169430117...

A376815 Decimal expansion of a constant related to the asymptotics of A376812.

Original entry on oeis.org

4, 1, 8, 3, 6, 2, 3, 0, 8, 2, 3, 1, 5, 0, 1, 0, 3, 7, 5, 9, 2, 4, 3, 4, 2, 0, 7, 4, 7, 1, 4, 3, 6, 2, 8, 9, 8, 9, 5, 6, 3, 8, 6, 9, 7, 7, 0, 7, 0, 3, 5, 8, 8, 7, 8, 5, 7, 8, 3, 2, 7, 1, 0, 0, 2, 0, 9, 8, 1, 9, 5, 1, 5, 7, 2, 6, 9, 5, 0, 8, 1, 6, 9, 4, 1, 1, 4, 8, 1, 0, 4, 6, 8, 4, 1, 7, 7, 0, 4, 5, 4, 9, 5, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Examples

			4.18362308231501037592434207471436289895638697707035887857832710...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^Sqrt[3*Log[r]^2 + 8*PolyLog[2, r^(1/2)] - 2*Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)

Formula

Equals limit_{n->infinity} A376812(n)^(1/sqrt(n)).
Equals A376660^2. - Vaclav Kotesovec, Oct 06 2024
Equals exp(sqrt(3*log(r)^2 + 8*polylog(2, r^(1/2)) - 2*Pi^2/3)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024
Showing 1-6 of 6 results.