A376713 a(n) is the minimum number with exactly n triples (u,m,v) of divisors such that u < v and m^2 is the harmonic mean of u^2 and v^2.
35, 70, 140, 210, 560, 420, 2240, 840, 1260, 1680, 35840, 2100, 143360, 6720, 5040, 4200, 1709435, 6300, 645575, 8400, 20160, 77350, 36728125, 12600, 45360, 430080, 31500, 33600, 1117484375, 25200, 24171875, 29400, 154700, 3418870, 181440, 44100, 31633175, 1291150
Offset: 1
Examples
a(1) = 35 is because the D2(35) = {1, 5^2, 7^2, 35^2} with the unique pair of squares of divisors (5^2, 35^2) we obtain 1/5^2+1/35^2 = 2/7^2. Hence m = 7^2 is in D2(35). There is no other solution. a(2) = 70 because D2(70) = {1, 2^2, 5^2, 7^2, 10^2, 14^2, 35^2, 70^2} and we find two pairs of squares of divisors: (5^2, 35^2) and (10^2, 70^2) giving respectively: First solution: 1/5^2+1/35^2 = 2/7^2. Hence m = 7 ^2 is in D2(70); Second solution: 1/10^2+1/70^2 = 2/14^2. Hence m = 14^2 is in D2(70).
Links
- Lucas A. Brown, Python program.
Programs
-
Maple
with(numtheory):nn:=5*10^8: for n from 1 to 25 do: ii:=0: for k from 4 to nn while (ii=0)do: d:=divisors(k):n0:=nops(d):it:=0: for i from 1 to n0-1 do: for j from i+1 to n0 do: s:=1/d[i]^2+ 1/d[j]^2: for u from 1 to n0 do: if s=2/d[u]^2 then it:=it+1:else fi: od: od: od: if it=n then ii:=1:printf(`%d %d \n`,n,k):else fi: od:od:
Extensions
a(26)-a(28) from Hugo Pfoertner, Oct 03 2024
a(17), a(19), a(23), and a(29)-a(38) from Lucas A. Brown, Nov 04 2024
Comments