A377007 Array read by antidiagonals: T(n,k) is the number of inequivalent 2*n X 2*k binary matrices with all row sums k and column sums n up to permutations of rows and columns.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 7, 4, 1, 1, 1, 1, 5, 19, 19, 5, 1, 1, 1, 1, 7, 46, 194, 46, 7, 1, 1, 1, 1, 8, 132, 3144, 3144, 132, 8, 1, 1, 1, 1, 10, 345, 65548, 601055, 65548, 345, 10, 1, 1, 1, 1, 12, 951, 1272696, 128665248, 128665248, 1272696, 951, 12, 1, 1
Offset: 0
Examples
Array begins: ============================================================================ n\k | 0 1 2 3 4 5 6 7 ... ----+----------------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 2 3 4 5 7 8 ... 3 | 1 1 3 7 19 46 132 345 ... 4 | 1 1 4 19 194 3144 65548 1272696 ... 5 | 1 1 5 46 3144 601055 128665248 24124134235 ... 6 | 1 1 7 132 65548 128665248 294494683312 607662931576945 ... 7 | 1 1 8 345 1272696 24124134235 607662931576945 14584161564179926207 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..119 (first 15 antidiagonals)
Crossrefs
Formula
T(n,k) = T(k,n).
Comments