cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377198 Expansion of 1/(1 - 4*x/(1-x)^2)^(3/2).

Original entry on oeis.org

1, 6, 42, 278, 1794, 11382, 71338, 443046, 2732034, 16751462, 102235050, 621535158, 3766261506, 22758222294, 137186860842, 825211984710, 4954574749698, 29697908825286, 177746214414634, 1062416305340502, 6342559258130178, 37823152988963126, 225328426205608362
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x/(1-x)^2)^(3/2))); // Vincenzo Librandi, May 11 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n+k-1,n-k],{k,0,n}],{n,0,35}] (* Vincenzo Librandi, May 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n+k-1, n-k));
    

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} (3-k/n) * (n-k) * a(k).
a(n) = ((7*n-1)*a(n-1) - (7*n-20)*a(n-2) + (n-3)*a(n-3))/n for n > 2.
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n+k-1,n-k).
a(n) ~ 2^(1/4) * sqrt(n) * (1 + sqrt(2))^(2*n) / sqrt(Pi). - Vaclav Kotesovec, May 03 2025
a(n) = 6*n*hypergeom([5/2, 1-n, 1+n], [3/2, 2], -1) for n > 0. - Stefano Spezia, May 08 2025

A377195 Expansion of 1/(1 - 4*x*(1+x)^2)^(5/2).

Original entry on oeis.org

1, 10, 90, 710, 5250, 37072, 253330, 1688640, 11039370, 71049200, 451429880, 2837585940, 17674206130, 109224234420, 670398280520, 4090210956596, 24823230801450, 149941593205140, 901881446152120, 5404072772837620, 32269536034506456, 192087243952281920
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[(-4)^k*Binomial[-5/2,k]Binomial[2*k,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-4)^k*binomial(-5/2, k)*binomial(2*k, n-k));

Formula

a(0) = 1, a(1) = 10, a(2) = 90; a(n) = (2*(2*n+3)*a(n-1) + 8*(n+3)*a(n-2) + 2*(2*n+9)*a(n-3))/n.
a(n) = Sum_{k=0..n} (-4)^k * binomial(-5/2,k) * binomial(2*k,n-k).

A377196 Expansion of 1/(1 - 4*x*(1+x)^2)^(7/2).

Original entry on oeis.org

1, 14, 154, 1442, 12306, 98448, 751338, 5530800, 39567066, 276569216, 1896366472, 12793873820, 85126910050, 559668331068, 3641262380472, 23473114767228, 150084462238410, 952629409818492, 6006967242402280, 37653314869948316, 234749051092791928, 1456337836252645280
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[(-4)^k*Binomial[-7/2,k]Binomial[2*k,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-4)^k*binomial(-7/2, k)*binomial(2*k, n-k));

Formula

a(0) = 1, a(1) = 14, a(2) = 154; a(n) = (2*(2*n+5)*a(n-1) + 8*(n+5)*a(n-2) + 2*(2*n+15)*a(n-3))/n.
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(2*k,n-k).
Showing 1-3 of 3 results.