cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377213 Expansion of 1/(1 - 4*x^3/(1-x))^(3/2).

Original entry on oeis.org

1, 0, 0, 6, 6, 6, 36, 66, 96, 266, 576, 1026, 2246, 4866, 9516, 19598, 41286, 83526, 170048, 351378, 716850, 1458098, 2984028, 6087270, 12380900, 25224222, 51356400, 104380510, 212164362, 431148222, 875353220, 1776567762, 3604752672, 7310374010, 14819370480, 30033014994
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^3/(1-x))^(3/2))); // Vincenzo Librandi, May 08 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-2*k-1,n-3*k],{k,0,Floor[n/3]}],{n,0,35}] (* Vincenzo Librandi, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (2*k+1)*binomial(2*k, k)*binomial(n-2*k-1, n-3*k));
    

Formula

a(n) = (2*(n-1)*a(n-1) - (n-2)*a(n-2) + 2*(2*n+3)*a(n-3) - 2*(2*n-2)*a(n-4))/n for n > 3.
a(n) = Sum_{k=0..floor(n/2)} (2*k+1) * binomial(2*k,k) * binomial(n-2*k-1,n-3*k).
a(n) ~ sqrt(n) * 2^(n-2) / sqrt(Pi). - Vaclav Kotesovec, May 03 2025

A377215 Expansion of 1/(1 - 4*x^2/(1-x))^(5/2).

Original entry on oeis.org

1, 0, 10, 10, 80, 150, 640, 1550, 5190, 13870, 41912, 115650, 333490, 925970, 2607540, 7220062, 20053700, 55230870, 152005380, 416295350, 1137980678, 3100453710, 8429823180, 22862244210, 61882724100, 167159512794, 450739897980, 1213298505770, 3260824389510
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^2/(1-x))^(5/2))); // Vincenzo Librandi, May 08 2025
  • Mathematica
    Table[Sum[(-4)^k*Binomial[-5/2,k]*Binomial[n-k-1,n-2*k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*binomial(-5/2, k)*binomial(n-k-1, n-2*k));
    

Formula

a(n) = (2*(n-1)*a(n-1) + (3*n+14)*a(n-2) - 2*(2*n-1)*a(n-3))/n for n > 2.
a(n) = Sum_{k=0..floor(n/2)} (-4)^k * binomial(-5/2,k) * binomial(n-k-1,n-2*k).
a(n) ~ n^(3/2) * 2^(3*n - 1/2) / (3 * 17^(5/4) * sqrt(Pi) * (sqrt(17) - 1)^(n - 5/2)). - Vaclav Kotesovec, May 03 2025

A383499 Expansion of 1/sqrt( (1-x) * (1-x-4*x^2)^3 ).

Original entry on oeis.org

1, 2, 9, 22, 71, 186, 537, 1434, 3957, 10586, 28603, 76266, 203767, 540986, 1435533, 3796050, 10026015, 26422350, 69544765, 182759750, 479731113, 1257750486, 3294264627, 8619879726, 22535782953, 58869786162, 153671378139, 400861115498, 1045005290059, 2722601576322
Offset: 0

Views

Author

Seiichi Manyama, May 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (2*k+1)*binomial(2*k, k)*binomial(n-k+1, k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} (2*k+1) * binomial(2*k,k) * binomial(n-k+1,k+1).
a(n) ~ sqrt(n/Pi) * ((1 + sqrt(17))/2)^(n + 5/2) / 17^(3/4). - Vaclav Kotesovec, May 05 2025
Showing 1-3 of 3 results.