cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377204 Expansion of 1/(1 - 4*x^2/(1-x))^(3/2).

Original entry on oeis.org

1, 0, 6, 6, 36, 66, 236, 546, 1626, 4106, 11388, 29646, 79838, 209718, 557328, 1465970, 3869448, 10166370, 26726080, 70092570, 183756378, 481048010, 1258494768, 3289100958, 8590288128, 22418099982, 58467588768, 152388145382, 396954437202, 1033452111702, 2689186662552
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^2/(1-x))^(3/2))); // Vincenzo Librandi, May 08 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-k-1,n-2*k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k+1)*binomial(2*k, k)*binomial(n-k-1, n-2*k));
    

Formula

a(n) = (2*(n-1)*a(n-1) + (3*n+6)*a(n-2) - 2*(2*n-3)*a(n-3))/n for n > 2.
a(n) = Sum_{k=0..floor(n/2)} (2*k+1) * binomial(2*k,k) * binomial(n-k-1,n-2*k).
a(n) ~ sqrt(n) * 2^(3*n - 1/2) / (17^(3/4) * sqrt(Pi) * (sqrt(17) - 1)^(n - 3/2)). - Vaclav Kotesovec, May 03 2025

A377216 Expansion of 1/(1 - 4*x^3/(1-x))^(5/2).

Original entry on oeis.org

1, 0, 0, 10, 10, 10, 80, 150, 220, 710, 1620, 2950, 7010, 16110, 32560, 70682, 156810, 329290, 698540, 1507110, 3189742, 6725150, 14279520, 30141730, 63335960, 133297362, 279996460, 586364410, 1227337710, 2566307410, 5355970048, 11166535430, 23259949980, 48389451510
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^3/(1-x))^(5/2))); // Vincenzo Librandi, May 10 2025
  • Mathematica
    Table[Sum[(-4)^k*Binomial[-5/2,k]*Binomial[n-2*k-1,n-3*k],{k,0,Floor[n/3]}],{n,0,35}] (* Vincenzo Librandi, May 10 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (-4)^k*binomial(-5/2, k)*binomial(n-2*k-1, n-3*k));
    

Formula

a(n) = (2*(n-1)*a(n-1) - (n-2)*a(n-2) + 2*(2*n+9)*a(n-3) - 2*(2*n+2)*a(n-4))/n for n > 3.
a(n) = Sum_{k=0..floor(n/3)} (-4)^k * binomial(-5/2,k) * binomial(n-2*k-1,n-3*k).
a(n) ~ n^(3/2) * 2^(n-3) / (3*sqrt(Pi)). - Vaclav Kotesovec, May 03 2025
Showing 1-2 of 2 results.