cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377277 Decimal expansion of 12*arctan(sqrt(2)).

Original entry on oeis.org

1, 1, 4, 6, 3, 7, 9, 9, 4, 1, 7, 4, 9, 4, 1, 1, 1, 3, 3, 7, 9, 6, 6, 2, 8, 5, 2, 3, 0, 1, 8, 9, 0, 9, 3, 0, 5, 0, 9, 2, 0, 9, 7, 6, 3, 4, 0, 1, 2, 0, 0, 6, 5, 8, 9, 1, 5, 1, 6, 3, 7, 7, 5, 5, 1, 8, 6, 2, 9, 4, 4, 5, 5, 0, 8, 4, 7, 7, 1, 7, 4, 6, 4, 6, 4, 8, 6, 9, 9, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Comments

Dehn invariant of a truncated tetrahedron with unit edge and (negated) of a regular tetrahedron with unit edge.

Examples

			11.463799417494111337966285230189093050920976340...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[12*ArcTan[Sqrt[2]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["Tetrahedron", "DehnInvariant"], 10, 100]]
  • PARI
    12*atan(sqrt(2)) \\ Charles R Greathouse IV, Nov 20 2024

Formula

Equals 12*A195696 = A377296/2.

A377299 Decimal expansion of the volume of a truncated cube with unit edge length.

Original entry on oeis.org

1, 3, 5, 9, 9, 6, 6, 3, 2, 9, 1, 0, 7, 4, 4, 4, 3, 5, 6, 1, 0, 7, 4, 5, 4, 7, 3, 7, 9, 6, 4, 5, 2, 5, 7, 6, 9, 9, 9, 9, 1, 8, 0, 2, 0, 8, 5, 0, 9, 2, 4, 2, 4, 3, 4, 1, 4, 9, 1, 1, 7, 2, 1, 1, 0, 6, 2, 3, 4, 1, 8, 2, 3, 2, 8, 2, 3, 1, 6, 6, 1, 8, 1, 3, 0, 1, 8, 0, 8, 4
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			13.599663291074443561074547379645257699991802085...
		

Crossrefs

Cf. A377298 (surface area), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).
Cf. A131594.

Programs

  • Mathematica
    First[RealDigits[7 + 14*Sqrt[2]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "Volume"], 10, 100]]

Formula

Equals 7 + (14/3)*sqrt(2) = 7 + 14*A131594.

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

Original entry on oeis.org

3, 2, 4, 3, 4, 6, 6, 4, 3, 6, 3, 6, 1, 4, 8, 9, 5, 1, 7, 2, 6, 7, 5, 1, 5, 7, 3, 7, 3, 5, 2, 8, 1, 2, 1, 6, 7, 6, 7, 2, 1, 6, 7, 3, 0, 1, 2, 1, 4, 4, 1, 3, 8, 1, 3, 4, 2, 3, 1, 7, 7, 0, 8, 1, 4, 7, 9, 2, 6, 5, 5, 7, 7, 5, 3, 6, 2, 8, 8, 4, 5, 4, 0, 3, 6, 6, 9, 4, 2, 7
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			32.4346643636148951726751573735281216767216730121...
		

Crossrefs

Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).

Programs

  • Mathematica
    First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.
Showing 1-3 of 3 results.