cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A377486 a(n) = product of {p^k : p | n, k = 1..floor(log n/log p)}, a(1) = 1.

Original entry on oeis.org

1, 2, 3, 8, 5, 24, 7, 64, 27, 320, 11, 1728, 13, 448, 135, 1024, 17, 27648, 19, 5120, 189, 11264, 23, 27648, 125, 13312, 729, 7168, 29, 93312000, 31, 32768, 8019, 557056, 875, 23887872, 37, 622592, 9477, 4096000, 41, 167215104, 43, 360448, 91125, 753664, 47, 23887872
Offset: 1

Views

Author

Michael De Vlieger, Oct 29 2024

Keywords

Comments

Compare with A064446, where A064446(n) = Product_{p|n} p^floor(log n / log p).

Examples

			Let S(n) = row n of A377485 = { p^k : p | n, p^k <= n, k > 0 }.
a(4) = 8 since S(4) = {2, 4} and the product of these is 8.
a(6) = 24 since S(6) = {2, 3, 4} and the product of these is 24.
a(12) = 1728 since S(12) = {2, 3, 4, 8, 9}, etc.
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[Times @@ Flatten@ Map[#^Range[Floor@ Log[#, n]] &, FactorInteger[n][[All, 1]]], {n, 2, 120}]

Formula

a(p) = p for prime p.
a(p^k) = Product_{j=1..k} p^j = p^(k*(k+1)/2) = p^A000217(k).
a(n) = Product_{p|n} p^(k*(k+1)/2), where k = floor(log n / log p).
Product of row n of A377485.

A377488 Irregular triangle r ead by rows where row n lists powers p^k for primes p | n such that k = floor(log n/log p).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 4, 7, 8, 9, 5, 8, 11, 8, 9, 13, 7, 8, 5, 9, 16, 17, 9, 16, 19, 5, 16, 7, 9, 11, 16, 23, 9, 16, 25, 13, 16, 27, 7, 16, 29, 16, 25, 27, 31, 32, 11, 27, 17, 32, 7, 25, 27, 32, 37, 19, 32, 13, 27, 25, 32, 41, 7, 27, 32, 43, 11, 32, 25, 27, 23, 32
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2024

Keywords

Comments

Row 1 is {1} by convention, since 1 is the empty product.

Examples

			Table of the first 12 rows:
   1:  1;
   2:  2;
   3:  3:
   4:  4;
   5:  5;
   6:  3, 4;
   7:  7;
   8:  8;
   9:  9;
  10:  5, 8;
  11: 11;
  12:  8, 9.
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Table[Union[Join @@ Map[#^Range[Floor@ Log[#, n]] &, FactorInteger[n][[All, 1]] ] ], {n, 2, 30}]

Formula

Row n is { p^k : p | n, k = floor(log n/log p) }.
Row p^k = { p^k } for prime p and k > 0.
A001221(n) = length of row n for n > 1.
A064446(n) = product of row n.
A339378(n) = sum of row n for n > 1.

A380870 a(n) = A381798(n) - A361373(n) - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 2, 0, 1, 4, 6, 0, 0, 0, 8, 0, 1, 0, 1, 0, 0, 3, 3, 7, 2, 0, 13, 0, 1, 0, 4, 0, 7, 6, 6, 0, 1, 0, 15, 14, 8, 0, 13, 3, 0, 15, 23, 0, 1, 0, 0, 5, 0, 5, 7, 0, 3, 9, 12, 0, 2, 0, 30, 18, 14, 10, 6, 0, 3, 0, 14, 0
Offset: 1

Views

Author

Michael De Vlieger, Apr 08 2025

Keywords

Comments

a(n) = cardinality of the intersection of A024619 and row n of A381799.
Let S(n,p) = {p^m : p | n, m = 1..floor(log_p n)}. Therefore S(10,2) = {1,2,4,8} and S(30,3) = {1,3,9,27}. Then U({S(n,p) : p|n}) = row n of A377485.
Let T(n,p) = {p^m (mod n) : p | n} the set of prime divisor power residues r (mod n) == p^m, p | n. Thus T(10,2) = {1,2,4,8,6} and T(30,3) = {1,3,9,27,21}. Then U({T(n,p) : p|n}) = row n of A381799.

Examples

			Table of n, a(n), and H(n) = intersection of row n of A381799 with A024619.
 n   facs(n)   a(n)  H(n)
--------------------------------------------
 6   2 * 3       0   -
10   2 * 5       1   {6}
12   2^2 * 3     0   -
14   2 * 7       0   -
15   3 * 5       3   {6, 10, 12}
18   2 * 3^2     2   {10, 14}
20   2^2 * 5     1   {12}
21   3 * 7       4   {6, 12, 15, 18}
22   2 * 11      6   {6, 10, 12, 14, 18, 20}
24   2^3 * 3     0   -
30   2 * 3 * 5   1   {21}
.
a(6) = 0 since Q(6) = R(6) = {1,2,3,4}, i.e., all terms in row 6 of A381799 are powers of primes.
a(10) = 1 since Q(10) = {1,2,4,5,8} but R(10) = {1,2,4,5,6,8}; the latter set contains 1 term (i.e., 6) that is not a member of the former set.
a(14) = 0 since R(14) = {1,2,4,7,8} are all powers of primes.
a(15) = 3 since R(15) = {1,3,5,6,9,10,12} has 3 terms {6,10,12} that are not powers of primes.
a(18) = 2 since R(18) = {1,2,3,4,8,9,10,14,16} has 2 terms {6,10} that are not powers of primes, etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_, p_] := Block[{m = 2, r, c},
      Which[
        PrimePowerQ[x],
        Join[{0}, #1^Range[0, #2 - 1]] & @@ FactorInteger[x][[1]],
        PowerMod[p, m, x] == p, {1, p},
        True, c[_] := False;
        c[1] = c[p] = True; {1, p}~Join~
          Reap[While[r = PowerMod[p, m, x]; ! c[r], Sow[r];
            c[r] = True; m++] ][[-1, 1]] ] ]
    Table[Count[Union@ Flatten@ Map[f[n, #] &, FactorInteger[n][[All, 1]] ], _?(And[# > 1, ! PrimePowerQ[#]] &)], {n, 120}]

Formula

Let Q(n) = {1} joined to row n > 1 of A377485 and let R(n) = row n of A381799.
a(n) = card(U(Q(n) \ R(n))).
a(p^m) = 0 for prime power p^m, m >= 0.
a(n) = 0 for n in A381750.

A384442 Smallest k such that A361373(k) = n.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 40, 36, 30, 60, 102, 84, 132, 150, 264, 210, 540, 330, 420, 660, 630, 840, 1050, 2100, 2340, 2520, 3150, 2310, 2730, 4290, 4620, 6930, 9240, 15960, 16170, 17850, 18480, 20790, 34650, 62370, 68250, 30030, 62790, 60060, 78540, 90090, 117810
Offset: 0

Views

Author

Michael De Vlieger, Jun 12 2025

Keywords

Comments

For n > 1, a(n) is composite, since A361373(p) = 1 for prime p.
For n = 0..2, a(n) = 2^n. For n > 2, a(n) is in A024619.

Examples

			Table of n, a(n) for n = 1..12, showing row a(n) of A377485.
          log n/log p
 n  a(n)  p_1 p_2 p_3  row n of A377485
-------------------------------------------------------------------------
 1:   2   1            {p}
 2:   4   2            {p, p^2}
 3:   6   2   1        {p, q, p^2}
 4:  10   3   1        {p, p^2, q, p^3}
 5:  12   3   2        {p, q, p^2, p^3, q^2}
 6:  18   4   2        {p, q, p^2, p^3, q^2, p^4}
 7:  40   5   2        {p, p^2, q, p^3, p^4, q^2, p^5}
 8:  36   5   3        {p, q, p^2, p^3, q^2, p^4, q^3, p^5}
 9:  30   4   3   2    {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3}
10:  60   5   3   2    {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3, p^5}
11: 102   6   4   1    {p, q, p^2, p^3, q^2, p^4, r, q^3, p^5, p^6, q^4}
12:  84   6   4   2    {p, q, p^2, r, p^3, q^2, p^4, q^3, p^5, r^2, p^6, q^4}
		

Crossrefs

Programs

  • Mathematica
    nn = 30030; t[_] := 0; u = 1; Do[(If[t[#] == 0, t[#] = n]; If[# == u, While[t[u] != 0, u++]]) &[Total@ Map[Floor@ Log[#, n] &, FactorInteger[n][[All, 1]] ] ], {n, 2, nn}]; {1}~Join~Array[t, u - 1]

A384936 a(n) = Sum_{k=1..n} floor( log(A002110(n)) / log(prime(k)) ).

Original entry on oeis.org

0, 1, 3, 9, 16, 28, 42, 57, 76, 97, 121, 148, 177, 208, 242, 279, 316, 359, 401, 446, 493, 545, 596, 651, 708, 767, 829, 893, 958, 1026, 1096, 1170, 1246, 1319, 1400, 1484, 1567, 1657, 1742, 1834, 1923, 2021, 2119, 2218, 2316, 2419, 2526, 2635, 2745, 2857, 2972
Offset: 0

Views

Author

Michael De Vlieger, Jun 12 2025

Keywords

Comments

A384442(a(n)) = A002110(n) for n <= 8; does it hold for n > 5?

Examples

			Table of n, a(n) for n = 0..10, listing terms in row n of A287010:
      Terms in row n of A287010 corresponding
      to the primes listed in the header
 n\k   2   3   5   7  11  13  17  19  23  29   a(n)
---------------------------------------------------
 0:    0   .   .   .   .   .   .   .   .   .     0
 1:    1   .   .   .   .   .   .   .   .   .     1
 2:    2   1   .   .   .   .   .   .   .   .     3
 3:    4   3   2   .   .   .   .   .   .   .     9
 4:    7   4   3   2   .   .   .   .   .   .    16
 5:   11   7   4   3   3   .   .   .   .   .    28
 6:   14   9   6   5   4   4   .   .   .   .    42
 7:   18  11   8   6   5   5   4   .   .   .    57
 8:   23  14   9   8   6   6   5   5   .   .    76
 9:   27  17  11   9   8   7   6   6   6   .    97
10:   32  20  14  11   9   8   7   7   7   6   121
		

Crossrefs

Programs

  • Mathematica
    P = 2; s = {2}; {0}~Join~Reap[Do[Sow@ Total@ Map[Floor@ Log[#, P] &, s]; (AppendTo[s, #]; P *= #) &[Prime[k]], {k, 2, 51}] ][[-1, 1]]
  • PARI
    a(n) = my(v=primes(n), pp=vecprod(v)); sum(k=1, n, log(pp)\log(v[k])); \\ Michel Marcus, Jun 14 2025

Formula

a(n) = A361373(A002110(n)).
Row sums of A287010.
Showing 1-5 of 5 results.