A377486
a(n) = product of {p^k : p | n, k = 1..floor(log n/log p)}, a(1) = 1.
Original entry on oeis.org
1, 2, 3, 8, 5, 24, 7, 64, 27, 320, 11, 1728, 13, 448, 135, 1024, 17, 27648, 19, 5120, 189, 11264, 23, 27648, 125, 13312, 729, 7168, 29, 93312000, 31, 32768, 8019, 557056, 875, 23887872, 37, 622592, 9477, 4096000, 41, 167215104, 43, 360448, 91125, 753664, 47, 23887872
Offset: 1
Let S(n) = row n of A377485 = { p^k : p | n, p^k <= n, k > 0 }.
a(4) = 8 since S(4) = {2, 4} and the product of these is 8.
a(6) = 24 since S(6) = {2, 3, 4} and the product of these is 24.
a(12) = 1728 since S(12) = {2, 3, 4, 8, 9}, etc.
-
{1}~Join~Table[Times @@ Flatten@ Map[#^Range[Floor@ Log[#, n]] &, FactorInteger[n][[All, 1]]], {n, 2, 120}]
A377488
Irregular triangle r ead by rows where row n lists powers p^k for primes p | n such that k = floor(log n/log p).
Original entry on oeis.org
1, 2, 3, 4, 5, 3, 4, 7, 8, 9, 5, 8, 11, 8, 9, 13, 7, 8, 5, 9, 16, 17, 9, 16, 19, 5, 16, 7, 9, 11, 16, 23, 9, 16, 25, 13, 16, 27, 7, 16, 29, 16, 25, 27, 31, 32, 11, 27, 17, 32, 7, 25, 27, 32, 37, 19, 32, 13, 27, 25, 32, 41, 7, 27, 32, 43, 11, 32, 25, 27, 23, 32
Offset: 1
Table of the first 12 rows:
1: 1;
2: 2;
3: 3:
4: 4;
5: 5;
6: 3, 4;
7: 7;
8: 8;
9: 9;
10: 5, 8;
11: 11;
12: 8, 9.
-
{{1}}~Join~Table[Union[Join @@ Map[#^Range[Floor@ Log[#, n]] &, FactorInteger[n][[All, 1]] ] ], {n, 2, 30}]
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 2, 0, 1, 4, 6, 0, 0, 0, 8, 0, 1, 0, 1, 0, 0, 3, 3, 7, 2, 0, 13, 0, 1, 0, 4, 0, 7, 6, 6, 0, 1, 0, 15, 14, 8, 0, 13, 3, 0, 15, 23, 0, 1, 0, 0, 5, 0, 5, 7, 0, 3, 9, 12, 0, 2, 0, 30, 18, 14, 10, 6, 0, 3, 0, 14, 0
Offset: 1
Table of n, a(n), and H(n) = intersection of row n of A381799 with A024619.
n facs(n) a(n) H(n)
--------------------------------------------
6 2 * 3 0 -
10 2 * 5 1 {6}
12 2^2 * 3 0 -
14 2 * 7 0 -
15 3 * 5 3 {6, 10, 12}
18 2 * 3^2 2 {10, 14}
20 2^2 * 5 1 {12}
21 3 * 7 4 {6, 12, 15, 18}
22 2 * 11 6 {6, 10, 12, 14, 18, 20}
24 2^3 * 3 0 -
30 2 * 3 * 5 1 {21}
.
a(6) = 0 since Q(6) = R(6) = {1,2,3,4}, i.e., all terms in row 6 of A381799 are powers of primes.
a(10) = 1 since Q(10) = {1,2,4,5,8} but R(10) = {1,2,4,5,6,8}; the latter set contains 1 term (i.e., 6) that is not a member of the former set.
a(14) = 0 since R(14) = {1,2,4,7,8} are all powers of primes.
a(15) = 3 since R(15) = {1,3,5,6,9,10,12} has 3 terms {6,10,12} that are not powers of primes.
a(18) = 2 since R(18) = {1,2,3,4,8,9,10,14,16} has 2 terms {6,10} that are not powers of primes, etc.
-
f[x_, p_] := Block[{m = 2, r, c},
Which[
PrimePowerQ[x],
Join[{0}, #1^Range[0, #2 - 1]] & @@ FactorInteger[x][[1]],
PowerMod[p, m, x] == p, {1, p},
True, c[_] := False;
c[1] = c[p] = True; {1, p}~Join~
Reap[While[r = PowerMod[p, m, x]; ! c[r], Sow[r];
c[r] = True; m++] ][[-1, 1]] ] ]
Table[Count[Union@ Flatten@ Map[f[n, #] &, FactorInteger[n][[All, 1]] ], _?(And[# > 1, ! PrimePowerQ[#]] &)], {n, 120}]
A384442
Smallest k such that A361373(k) = n.
Original entry on oeis.org
1, 2, 4, 6, 10, 12, 18, 40, 36, 30, 60, 102, 84, 132, 150, 264, 210, 540, 330, 420, 660, 630, 840, 1050, 2100, 2340, 2520, 3150, 2310, 2730, 4290, 4620, 6930, 9240, 15960, 16170, 17850, 18480, 20790, 34650, 62370, 68250, 30030, 62790, 60060, 78540, 90090, 117810
Offset: 0
Table of n, a(n) for n = 1..12, showing row a(n) of A377485.
log n/log p
n a(n) p_1 p_2 p_3 row n of A377485
-------------------------------------------------------------------------
1: 2 1 {p}
2: 4 2 {p, p^2}
3: 6 2 1 {p, q, p^2}
4: 10 3 1 {p, p^2, q, p^3}
5: 12 3 2 {p, q, p^2, p^3, q^2}
6: 18 4 2 {p, q, p^2, p^3, q^2, p^4}
7: 40 5 2 {p, p^2, q, p^3, p^4, q^2, p^5}
8: 36 5 3 {p, q, p^2, p^3, q^2, p^4, q^3, p^5}
9: 30 4 3 2 {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3}
10: 60 5 3 2 {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3, p^5}
11: 102 6 4 1 {p, q, p^2, p^3, q^2, p^4, r, q^3, p^5, p^6, q^4}
12: 84 6 4 2 {p, q, p^2, r, p^3, q^2, p^4, q^3, p^5, r^2, p^6, q^4}
-
nn = 30030; t[_] := 0; u = 1; Do[(If[t[#] == 0, t[#] = n]; If[# == u, While[t[u] != 0, u++]]) &[Total@ Map[Floor@ Log[#, n] &, FactorInteger[n][[All, 1]] ] ], {n, 2, nn}]; {1}~Join~Array[t, u - 1]
A384936
a(n) = Sum_{k=1..n} floor( log(A002110(n)) / log(prime(k)) ).
Original entry on oeis.org
0, 1, 3, 9, 16, 28, 42, 57, 76, 97, 121, 148, 177, 208, 242, 279, 316, 359, 401, 446, 493, 545, 596, 651, 708, 767, 829, 893, 958, 1026, 1096, 1170, 1246, 1319, 1400, 1484, 1567, 1657, 1742, 1834, 1923, 2021, 2119, 2218, 2316, 2419, 2526, 2635, 2745, 2857, 2972
Offset: 0
Table of n, a(n) for n = 0..10, listing terms in row n of A287010:
Terms in row n of A287010 corresponding
to the primes listed in the header
n\k 2 3 5 7 11 13 17 19 23 29 a(n)
---------------------------------------------------
0: 0 . . . . . . . . . 0
1: 1 . . . . . . . . . 1
2: 2 1 . . . . . . . . 3
3: 4 3 2 . . . . . . . 9
4: 7 4 3 2 . . . . . . 16
5: 11 7 4 3 3 . . . . . 28
6: 14 9 6 5 4 4 . . . . 42
7: 18 11 8 6 5 5 4 . . . 57
8: 23 14 9 8 6 6 5 5 . . 76
9: 27 17 11 9 8 7 6 6 6 . 97
10: 32 20 14 11 9 8 7 7 7 6 121
-
P = 2; s = {2}; {0}~Join~Reap[Do[Sow@ Total@ Map[Floor@ Log[#, P] &, s]; (AppendTo[s, #]; P *= #) &[Prime[k]], {k, 2, 51}] ][[-1, 1]]
-
a(n) = my(v=primes(n), pp=vecprod(v)); sum(k=1, n, log(pp)\log(v[k])); \\ Michel Marcus, Jun 14 2025
Showing 1-5 of 5 results.
Comments