cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377629 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^4 ).

Original entry on oeis.org

1, 4, 60, 1644, 66712, 3611620, 245284344, 20071928212, 1923688610400, 211438912978692, 26225665058289640, 3624147718351890004, 552229557439437084816, 91990834731657653530180, 16632301623786709606057368, 3243982650658692575922907860, 678932992008068232965498759104
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+4, k)/((4*n+k+4)*(n-k)!));

Formula

E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^4.
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377631.
a(n) = 4 * n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+4,k)/( (4*n+k+4)*(n-k)! ).

A377631 E.g.f. satisfies A(x) = 1/(1 - x * A(x)^4 * exp(x*A(x)^4)).

Original entry on oeis.org

1, 1, 12, 297, 11380, 593785, 39304206, 3155996557, 298106913336, 32391139027185, 3980284376962330, 545806093612966021, 82628400115183659012, 13688201250584241332809, 2463065653446247669021398, 478399017659163635014545405, 99757368661138669886988396016
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+1, k)/((4*n+k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+1,k)/( (4*n+k+1)*(n-k)! ).
Showing 1-2 of 2 results.