cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377670 Number of subwords of the form UDD in nondecreasing Dyck paths of length 2n.

Original entry on oeis.org

0, 0, 1, 4, 14, 45, 138, 411, 1200, 3454, 9836, 27779, 77938, 217493, 604222, 1672246, 4613030, 12689265, 34817418, 95320335, 260436588, 710278318, 1933906496, 5257545599, 14273273314, 38699274665, 104799960058, 283487736166, 766045036730, 2067997219629, 5577597593466, 15030365074659, 40470488092008
Offset: 0

Views

Author

Rigoberto Florez, Nov 03 2024

Keywords

Comments

A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
a(n) also represents the number of subwords of the form UUDDD in nondecreasing Dyck paths of length 2n.

Crossrefs

Programs

  • Mathematica
    Table[If[n<2, 0,(2*Fibonacci[2n-3] + n*LucasL[2n-3]+2 LucasL[2n-2]-5*2^(n-2))/5], {n,0,20}]

Formula

a(n) = (2*F(2*n-3) + n*L(2*n-3) + 2*L(2*n-2) - 5*2^(n-2))/5 for n>=2, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: x^2*(1-x)*(x^3-2*x^2+3*x-1)/((2*x-1)*(x^2-3*x+1)^2). - Alois P. Heinz, Nov 03 2024
E.g.f.: (4*exp(3*x/2)*(5*(10 - x)*cosh(sqrt(5)*x/2) - sqrt(5)*(18 - 5*x)*sinh(sqrt(5)*x/2)) - 25*(7 + exp(2*x) + 2*x))/100. - Stefano Spezia, Mar 04 2025