A377729 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly 2 ways.
19, 90, 162, 299, 509, 816, 1248, 1837, 2619, 3634, 4926, 6543, 8537, 10964, 13884, 17361, 21463, 26262, 31834, 38259, 45621, 54008, 63512, 74229, 86259, 99706, 114678, 131287, 149649, 169884, 192116, 216473, 243087, 272094, 303634, 337851, 374893, 414912, 458064, 504509
Offset: 3
Keywords
Examples
a(3) = 19 = 1 + 3 + 15 = 3 + 6 + 10. a(4) = 90 = 1^2 + 2^2 + 6^2 + 7^2 = 1^2 + 3^2 + 4^2 + 8^2.
Links
- Eric Weisstein's World of Mathematics, Polygonal Number
Formula
From David A. Corneth, Nov 06 2024: (Start)
a(n) >= A006484(n).
Conjecture: a(n) = (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. (End)
Conjectured g.f.: x^3*(19 - 5*x - 98*x^2 + 199*x^3 - 171*x^4 + 72*x^5 - 12*x^6) / (1 - x)^5.
Extensions
a(12)-a(36) from Michael S. Branicky, Nov 06 2024
More terms from David A. Corneth, Nov 10 2024
Comments