cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345531 Smallest prime power greater than the n-th prime.

Original entry on oeis.org

3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1

Views

Author

Dario T. de Castro, Jun 20 2021

Keywords

Comments

Take the family of correlated prime-indexed conjectures appearing in A343249 - A343253, in which an alternative formula for the p-adic order of positive integers is proposed. There, the general p-indexed conjecture says that v_p(n), the p-adic order of n, is given by the formula: v_p(n) = log_p(n / L_p(k0, n)), where L_p(k0, n) is the lowest common denominator of the elements of the set S_p(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by p}. Evidence suggests that the primality of p is a necessary condition in this general conjecture. So, if a composite number q is used instead of a prime p in the proposed formula for the p-adic (now, q-adic) order of n, the first counterexample (failure) is expected to occur for n = q * a(i), where i is the index of the smallest prime that divides q.
The prime-power a(n) is at most the next prime, so this sequence is strictly increasing. See also A366833. - Gus Wiseman, Nov 06 2024

Examples

			a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
		

Crossrefs

Starting with n instead of prime(n): A000015, A031218, A377468, A377780, A377782.
Opposite (greatest prime-power less than): A065514, A377289, A377781.
For squarefree instead of prime-power: A112926, opposite A112925.
The difference from prime(n) is A377281.
The prime terms have indices A377286(n) - 1.
First differences are A377703.
A version for perfect-powers is A378249.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 and A361102 list the non-prime-powers, differences A375735.

Programs

  • Maple
    f:= proc(n) local p,x;
      p:= ithprime(n);
      for x from p+1 do
        if nops(numtheory:-factorset(x)) = 1 then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 25 2024
  • Mathematica
    a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N];
    tabseq = Table[a[i],{i, 1, 100}];
    (* second program *)
    Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
  • PARI
    A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k)));
    A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
    
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(1+A000040(n)). - Antti Karttunen, Jul 19 2021
a(n) = A000015(A008864(n)). - Omar E. Pol, Oct 27 2021

A065514 Largest power of a prime < prime(n).

Original entry on oeis.org

1, 2, 4, 5, 9, 11, 16, 17, 19, 27, 29, 32, 37, 41, 43, 49, 53, 59, 64, 67, 71, 73, 81, 83, 89, 97, 101, 103, 107, 109, 125, 128, 131, 137, 139, 149, 151, 157, 163, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 243, 256, 257, 263, 269, 271
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 27 2001

Keywords

Crossrefs

Starting with n instead of prime(n) gives A031218 (A377282, A377782).
The squarefree version is A112925 (A070321, A378038).
The opposite squarefree version is A112926 (A378037, restriction of A067535).
Difference from prime(n) is A377289 (restriction of A276781, opposite A377281).
First differences are A377781.
The nonsquarefree version is A378032 (A377783 (restriction of A378033), A378034, A378040).
The perfect power version is A378035.
A000015 gives the least prime power >= n, differences A377780.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A345531 gives the least prime power > prime(n), differences A377703.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057, A377286.

Programs

  • Mathematica
    lpp[n_]:=Module[{k=n-1},While[!PrimePowerQ[k],k--];k]; Join[{1},Table[ lpp[ n],{n,Prime[Range[2,60]]}]] (* Harvey P. Dale, Nov 24 2018 *)
  • Python
    from sympy import factorint, prime
    def A065514(n): return next(filter(lambda m:len(factorint(m))<=1, range(prime(n)-1,0,-1))) # Chai Wah Wu, Oct 25 2024

Extensions

Name edited (1 is technically not a prime power even though it is a power of a prime) by Gus Wiseman, Dec 03 2024.

A378039 a(1)=3; a(n>1) = n-th first difference of A120327(k) = least nonsquarefree number greater than k.

Original entry on oeis.org

3, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 1, 2, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

The union is {0,1,2,3,4}.

Crossrefs

Positions of 0's are A005117.
Positions of 4's are A007675 - 1, except first term.
Positions of 1's are A068781.
Positions of 2's are A073247 - 1.
Positions of 3's are A073248 - 1, except first term.
First-differences of A120327.
For prime-powers we have A377780, first-differences of A000015.
Restriction is A377784 (first-differences of A377783, union A378040).
The opposite is A378036 (differences A378033), for prime-powers A377782.
The opposite for squarefree is A378085, differences of A070321
For squarefree we have A378087, restriction A378037, differences of A112926.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]

A378087 First-differences of A067535 (least positive integer >= n that is squarefree).

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 3, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Does this contain all nonnegative integers? The positions of first appearances begin: 4, 1, 3, 7, 47, 241, 843, 22019, 217069, ...

Crossrefs

Ones are A007674.
Zeros are A013929, complement A005117.
Positions of first appearances are A020754 (except first term) = A045882 - 1.
First-differences of A067535.
Twos are A280892.
For prime-powers we have A377780, differences of A000015.
The nonsquarefree opposite is A378036, differences of A378033.
The restriction to primes + 1 is A378037 (opposite A378038), differences of A112926.
For nonsquarefree numbers we have A378039, see A377783, A377784, A378040.
The opposite is A378085, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A377782 First-differences of A031218(n) = greatest number <= n that is 1 or a prime-power.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

Note 1 is a power of a prime (A000961) but not a prime-power (A246655).

Crossrefs

Positions of 1 are A006549.
Positions of 0 are A080765 = A024619 - 1, complement A181062 = A000961 - 1.
Positions of 2 are A120432 (except initial terms).
Sorted positions of first appearances appear to include A167236 - 1.
Positions of terms > 1 are A373677.
The restriction to primes minus 1 is A377289.
Below, A (B) indicates that A is the first-differences of B:
- This sequence is A377782 (A031218), which has restriction to primes A065514 (A377781).
- The opposite is A377780 (A000015), restriction A377703 (A345531).
- For nonsquarefree we have A378036 (A378033), opposite A378039 (A120327).
- For squarefree we have A378085 (A112925), restriction A378038 (A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
A378034 gives differences of A378032 (restriction of A378033).
Prime-powers between primes: A053607, A080101, A366833, A377057, A377286, A377287.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]]
Showing 1-5 of 5 results.