A377802 Triangle read by rows: T(n, k) = (2 * (n+1)^2 + 7 - (-1)^n) / 8 - k.
1, 2, 1, 4, 3, 2, 6, 5, 4, 3, 9, 8, 7, 6, 5, 12, 11, 10, 9, 8, 7, 16, 15, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 14, 13, 25, 24, 23, 22, 21, 20, 19, 18, 17, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31
Offset: 1
Examples
Triangle T(n, k) for 1 <= k <= n starts: n\ k : 1 2 3 4 5 6 7 8 9 10 11 12 13 ========================================================== 1 : 1 2 : 2 1 3 : 4 3 2 4 : 6 5 4 3 5 : 9 8 7 6 5 6 : 12 11 10 9 8 7 7 : 16 15 14 13 12 11 10 8 : 20 19 18 17 16 15 14 13 9 : 25 24 23 22 21 20 19 18 17 10 : 30 29 28 27 26 25 24 23 22 21 11 : 36 35 34 33 32 31 30 29 28 27 26 12 : 42 41 40 39 38 37 36 35 34 33 32 31 13 : 49 48 47 46 45 44 43 42 41 40 39 38 37 etc.
Crossrefs
Programs
-
PARI
T(n,k)=(2*(n+1)^2+7-(-1)^n)/8-k
Formula
T(n, k) = A002620(n+1) + 1 - k.
T(2*n-1, n) = n^2 - n + 1 = A002061(n); T(2*n-2, n) = (n-1)^2 = A000290(n-1) for n > 1; T(2*n-3, n) = (n-1) * (n-2) = A002378(n-2) for n > 2; T(2*n-4, n) = (n-1) * (n-3) = A005563(n-3) for n > 3.
G.f.: x*y*(1 - x*y + x^2*y + x^4*y^2 - x^5*y^3 + x^6*y^3 - x^3*y*(1 + 2*y - y^2))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Nov 08 2024
Comments