A382036
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)^2) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
Original entry on oeis.org
1, 1, 7, 94, 1901, 51696, 1771267, 73317616, 3560476761, 198531343360, 12502959204671, 877829600807424, 67991178144166213, 5759309535250776064, 529665762441463234875, 52560256640090731902976, 5597859153748148214250673, 636915477940535101583130624, 77102760978489789146276986231
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(2*n, k)/(n-k-1)!));
A380781
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x)^2 ).
Original entry on oeis.org
1, 3, 29, 514, 13473, 470616, 20607781, 1086800352, 67105960641, 4750972007680, 379512594172941, 33771911612182272, 3313441417839023521, 355371388642280715264, 41365962922892138767125, 5193995331631149377867776, 699785874809076112607739009, 100701968551637581411176480768
Offset: 0
-
a(n, q=1, r=1, s=1, t=2, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
A377830
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x)/(1 + x)^3 ).
Original entry on oeis.org
1, 4, 45, 886, 25397, 963216, 45615553, 2595412240, 172624541769, 13150155923200, 1129371806449301, 107987110491257856, 11379014255782146685, 1310277285293012678656, 163703077517048727256425, 22057132253723442887059456, 3188342874266180285119069457, 492178313447920665621400780800
Offset: 0
A380646
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x)/(1 + x)^2 ).
Original entry on oeis.org
1, 4, 46, 932, 27568, 1080432, 52916176, 3115326496, 214470890496, 16914853191680, 1504252282653184, 148956086481767424, 16256865070022066176, 1938988214539948730368, 250943399365390735104000, 35026523834624205803491328, 5245178283068781060488298496, 838841884254236846183525646336
Offset: 0
-
nmax=18; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-2*x]/(1 + x)^2 ,{x,0,nmax}]],x]Range[0,nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
-
a(n) = 2*n!*sum(k=0, n, (2*n+2)^(k-1)*binomial(2*n+2, n-k)/k!);
A380778
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x / (1 + x)^2) / (1 + x)^2 ).
Original entry on oeis.org
1, 3, 21, 238, 3777, 77616, 1966381, 59379888, 2085295617, 83580555520, 3767468068581, 188731359078912, 10405256927541889, 626236791181897728, 40860738460515664125, 2873352871221375440896, 216652727562188159522049, 17437704874236857627246592, 1492289181734461545084103477
Offset: 0
-
a(n, q=1, r=1, s=1, t=-2, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
A380779
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x / (1 + x)) / (1 + x)^2 ).
Original entry on oeis.org
1, 3, 23, 298, 5529, 134496, 4062631, 146903184, 6193969137, 298577002240, 16204658051031, 978156957629952, 65017249611283657, 4719532271850590208, 371519503997940966375, 31526820740816885549056, 2869134152226896957509089, 278763390556764407051452416
Offset: 0
-
a(n, q=1, r=1, s=1, t=-1, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
A380780
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)) / (1 + x)^2 ).
Original entry on oeis.org
1, 3, 27, 436, 10353, 326856, 12920731, 614694816, 34223383809, 2184028353280, 157223422977531, 12606338448248832, 1114292924502666673, 107657947282494206976, 11287975339133863810875, 1276603658863119005618176, 154909721707963344338403969, 20076669149268201122957819904
Offset: 0
-
a(n, q=1, r=1, s=1, t=1, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
Showing 1-7 of 7 results.