cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A379711 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis triacontahedron.

Original entry on oeis.org

2, 8, 7, 7, 8, 3, 6, 6, 1, 0, 4, 6, 1, 2, 2, 4, 2, 8, 0, 9, 4, 3, 4, 5, 0, 4, 5, 4, 8, 1, 7, 9, 9, 1, 7, 7, 5, 4, 7, 4, 9, 4, 2, 8, 6, 6, 5, 4, 0, 6, 4, 7, 0, 3, 4, 5, 6, 8, 2, 6, 3, 2, 1, 6, 9, 8, 3, 8, 3, 1, 7, 6, 7, 0, 9, 4, 3, 8, 4, 5, 9, 9, 1, 5, 6, 6, 8, 4, 9, 7
Offset: 1

Views

Author

Paolo Xausa, Dec 31 2024

Keywords

Comments

The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.8778366104612242809434504548179917754749428665406...
		

Crossrefs

Cf. A379708 (surface area), A379709 (volume), A379710 (inradius), A379388 (midradius).
Cf. A344075, A377995 and A377996 (dihedral angles of a truncated icosidodecahedron (great rhombicosidodecahedron)).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(-179 - 24*Sqrt[5])/241], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DisdyakisTriacontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((-179 - 24*sqrt(5))/241) = arccos((-179 - 24*A002163)/241).

A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.

Original entry on oeis.org

2, 6, 8, 9, 9, 2, 5, 2, 3, 4, 2, 0, 6, 5, 7, 6, 3, 4, 0, 0, 7, 2, 8, 8, 1, 5, 1, 4, 6, 3, 1, 6, 1, 6, 8, 3, 0, 0, 3, 5, 3, 3, 0, 3, 7, 2, 4, 9, 2, 1, 1, 4, 1, 4, 3, 1, 6, 0, 1, 1, 4, 5, 0, 7, 8, 1, 7, 2, 8, 3, 1, 9, 1, 3, 5, 1, 4, 1, 4, 4, 0, 1, 8, 9, 8, 9, 6, 6, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.6899252342065763400728815146316168300353303724921...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).

A377995 Decimal expansion of the dihedral angle, in radians, between square and pentagonal faces in a (small) rhombicosidodecahedron.

Original entry on oeis.org

2, 5, 8, 8, 0, 1, 8, 2, 9, 4, 6, 9, 2, 7, 4, 7, 9, 8, 6, 9, 5, 4, 1, 1, 0, 6, 5, 3, 1, 9, 0, 2, 3, 4, 3, 6, 4, 1, 6, 2, 1, 4, 5, 5, 7, 6, 6, 7, 4, 3, 8, 9, 4, 9, 7, 6, 3, 6, 6, 7, 4, 9, 8, 8, 5, 9, 0, 9, 6, 1, 2, 3, 6, 7, 9, 7, 5, 2, 7, 6, 0, 1, 6, 2, 1, 3, 2, 6, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Comments

Also the dihedral angle, in radians, between square and 10-gonal faces in a truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.588018294692747986954110653190234364162145576674...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(5 + Sqrt[5])/10]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["Rhombicosidodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((5 + sqrt(5))/10)) = arccos(-sqrt(A242671)).

A387189 Decimal expansion of the smallest dihedral angle, in radians, in a pentagonal bipyramid (Johnson solid J_13).

Original entry on oeis.org

1, 3, 0, 4, 7, 1, 6, 2, 7, 9, 5, 6, 8, 7, 3, 6, 3, 7, 1, 9, 9, 0, 7, 8, 1, 2, 6, 3, 2, 8, 7, 6, 4, 5, 1, 4, 8, 7, 3, 0, 6, 1, 5, 8, 3, 9, 9, 2, 5, 9, 5, 9, 4, 8, 3, 5, 8, 9, 4, 5, 5, 8, 9, 3, 4, 1, 2, 2, 8, 7, 1, 6, 7, 6, 4, 2, 0, 7, 9, 0, 6, 5, 8, 1, 9, 1, 3, 4, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 21 2025

Keywords

Comments

This is the dihedral angle between triangular faces at the edge where the two pyramidal parts of the solid meet.
Also the dihedral angle between triangular faces in a pentagonal orthobicupola (Johnson solid J_30).

Examples

			1.3047162795687363719907812632876451487306158399...
		

Crossrefs

Cf. A236367 (J_13 smallest dihedral angle).
Cf. other J_30 dihedral angles: A105199, A377995, A377996.
Cf. A179641 (J_13 volume), A120011 (J_13 surface area, divided by 10).
Cf. A384624 (J_30 volume), A384625 (J_30 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[80] - 5)/15], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J13", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((4*sqrt(5) - 5)/15) = arccos((A010532 - 5)/15).
Equals 2*A386852.

A387190 Decimal expansion of the second smallest dihedral angle, in radians, in an elongated pentagonal cupola (Johnson solid J_20).

Original entry on oeis.org

2, 1, 2, 4, 3, 7, 0, 6, 8, 5, 6, 9, 1, 9, 4, 1, 8, 7, 0, 7, 3, 9, 8, 5, 4, 4, 2, 1, 7, 2, 9, 0, 1, 9, 9, 6, 2, 1, 3, 3, 6, 0, 8, 5, 2, 2, 3, 8, 8, 2, 6, 9, 2, 3, 3, 8, 2, 5, 7, 4, 1, 8, 9, 9, 8, 7, 0, 7, 6, 3, 3, 7, 2, 6, 3, 1, 7, 8, 5, 8, 9, 6, 3, 2, 0, 7, 2, 5, 9, 7
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between adjacent square faces at the edge where the prism and cupola parts of the solid meet.
Also the analogous dihedral angle in Johnson solids J_38-J_41.
Also the dihedral angle between a square face and a decagonal face in Johnson solids J_76-J_83.

Examples

			2.124370685691941870739854421729019962133608522388...
		

Crossrefs

Cf. other J_20 dihedral angles: A019669, A228824, A377995, A377996, A387147.
Cf. A384144 (J_20 volume), A179591 (J_20 surface area - 10).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(5 - Sqrt[5])/10]], 10, 100]] (* or *)
    First[RealDigits[RankedMin[Union[PolyhedronData["J20", "DihedralAngles"]], 2], 10, 100]]

Formula

Equals arccos(-sqrt((5 - sqrt(5))/10)) = arccos(-sqrt((5 - A002163)/10)).

A387607 Decimal expansion of the largest dihedral angle, in radians, in a gyroelongated pentagonal cupola (Johnson solid J_24).

Original entry on oeis.org

2, 7, 7, 8, 3, 2, 8, 6, 6, 6, 1, 9, 9, 0, 2, 1, 3, 5, 5, 1, 0, 7, 4, 2, 8, 9, 1, 9, 0, 0, 5, 0, 7, 8, 0, 0, 4, 2, 5, 0, 8, 3, 3, 3, 3, 6, 4, 0, 9, 0, 3, 0, 2, 5, 4, 1, 8, 9, 6, 7, 8, 8, 2, 2, 4, 6, 8, 6, 4, 2, 9, 7, 3, 5, 1, 3, 1, 6, 6, 8, 6, 6, 6, 8, 4, 5, 7, 9, 1, 6
Offset: 1

Views

Author

Paolo Xausa, Sep 04 2025

Keywords

Comments

This is the dihedral angle between triangular faces in the antiprism part of the solid.
Also the analogous dihedral angle in a gyroelongated pentagonal rotunda, gyroelongated pentagonal bicupola, gyroelongated pentagonal cupolarotunda and gyroelongated pentagonal birotunda (Johnson solids J_25, J_46, J_47 and J_48, respectively).
Also the analogous dihedral angle in a decagonal antiprism.

Examples

			2.7783286661990213551074289190050780042508333364090...
		

Crossrefs

Cf. other J_24 dihedral angles: A377995, A377996, A387608, A387609, A387610.
Cf. A384283 (J_24 volume), A384284 (J_24 surface area).
Cf. A384285 (J_25 volume), A384286 (J_25 surface area).
Cf. A385260 (J_46 volume), A385261 (J_46 surface area).
Cf. A385262 (J_47 volume), A385263 (J_47 surface area).
Cf. A385264 (J_48 volume), A385488 (J_48 surface area).
Cf. A010476.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(1 - Sqrt[10 + Sqrt[20]])/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J24", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((1 - sqrt(10 + 2*sqrt(5)))/3) = arccos((1 - sqrt(10 + A010476))/3).

A387608 Decimal expansion of the fourth largest dihedral angle, in radians, in a gyroelongated pentagonal cupola (Johnson solid J_24).

Original entry on oeis.org

2, 3, 1, 4, 7, 2, 5, 6, 8, 7, 3, 7, 5, 1, 3, 0, 0, 8, 1, 4, 7, 3, 7, 9, 3, 7, 9, 1, 4, 7, 4, 1, 8, 2, 9, 7, 1, 1, 3, 4, 0, 4, 3, 2, 9, 7, 2, 3, 8, 1, 7, 5, 6, 0, 2, 6, 1, 5, 0, 1, 1, 0, 9, 3, 5, 1, 6, 2, 2, 2, 5, 6, 6, 6, 3, 9, 1, 7, 8, 6, 8, 3, 2, 7, 1, 0, 4, 2, 4, 1
Offset: 1

Views

Author

Paolo Xausa, Sep 04 2025

Keywords

Comments

This is the dihedral angle between adjacent triangular faces at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated pentagonal bicupola and gyroelongated pentagonal cupolarotunda (Johnson solids J_46 and J_47, respectively).

Examples

			2.314725687375130081473793791474182971134043297238...
		

Crossrefs

Cf. other J_24 dihedral angles: A377995, A377996, A387607, A387609, A387610.
Cf. A384283 (J_24 volume), A384284 (J_24 surface area).
Cf. A385260 (J_46 volume), A385261 (J_46 surface area).
Cf. A385262 (J_47 volume), A385263 (J_47 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[15 - 6*#]] + ArcCos[(Sqrt[5 + 2*#] - # - 1)/Sqrt[3]] & [Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J24", "DihedralAngles"]],4], 10, 100]]

Formula

Equals arccos(sqrt((5 + 2*sqrt(5))/15)) + arccos((sqrt(5 + 2*sqrt(5)) - sqrt(5) - 1)/sqrt(3)) = arccos(sqrt((5 + A010476)/15)) + arccos((sqrt(5 + A010476) - A002163 - 1)/A002194).
Equals A386852 + A387610.

A387609 Decimal expansion of the fifth largest (second smallest) dihedral angle, in radians, in a gyroelongated pentagonal cupola (Johnson solid J_24).

Original entry on oeis.org

2, 2, 1, 5, 9, 4, 1, 9, 0, 6, 4, 8, 7, 8, 0, 7, 1, 4, 6, 9, 8, 6, 9, 3, 5, 8, 8, 9, 9, 1, 9, 6, 2, 8, 9, 1, 6, 8, 0, 3, 7, 5, 9, 1, 9, 9, 9, 7, 5, 9, 1, 2, 1, 8, 4, 1, 5, 8, 5, 5, 2, 7, 5, 0, 5, 2, 6, 9, 3, 4, 1, 5, 2, 3, 0, 6, 8, 2, 0, 5, 4, 7, 3, 6, 8, 1, 8, 3, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Sep 05 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated pentagonal bicupola and gyroelongated pentagonal cupolarotunda (Johnson solids J_46 and J_47, respectively).

Examples

			2.2159419064878071469869358899196289168037591999759...
		

Crossrefs

Cf. other J_24 dihedral angles: A377995, A377996, A387607, A387608, A387610.
Cf. A384283 (J_24 volume), A384284 (J_24 surface area).
Cf. A385260 (J_46 volume), A385261 (J_46 surface area).
Cf. A385262 (J_47 volume), A385263 (J_47 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcTan[2]/2 + ArcCos[(Sqrt[5 + Sqrt[20]] - Sqrt[5] - 1)/Sqrt[3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J24", "DihedralAngles"]], 5], 10, 100]]

Formula

Equals arctan(2)/2 + arccos((sqrt(5 + 2*sqrt(5)) - sqrt(5) - 1)/sqrt(3)) = A195693 + arccos((sqrt(5 + A010476) - A002163 - 1)/A002194).
Equals A195693 + A387610.

A387610 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated pentagonal cupola (Johnson solid J_24).

Original entry on oeis.org

1, 6, 6, 2, 3, 6, 7, 5, 4, 7, 5, 9, 0, 7, 6, 1, 8, 9, 5, 4, 7, 8, 4, 0, 3, 1, 5, 9, 8, 3, 0, 3, 6, 0, 3, 9, 6, 7, 6, 8, 7, 3, 5, 3, 7, 7, 2, 7, 5, 1, 9, 5, 8, 6, 0, 8, 2, 0, 2, 8, 3, 1, 4, 6, 8, 1, 0, 0, 7, 8, 9, 8, 2, 8, 1, 8, 1, 3, 9, 1, 5, 0, 3, 6, 1, 4, 7, 5, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Sep 05 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the decagonal face.
Also the analogous dihedral angle in a gyroelongated pentagonal rotunda (Johnson solid J_25).
Also the analogous dihedral angle in a decagonal antiprism.

Examples

			1.662367547590761895478403159830360396768735377275...
		

Crossrefs

Cf. other J_24 dihedral angles: A377995, A377996, A387607, A387608, A387609.
Cf. A384283 (J_24 volume), A384284 (J_24 surface area).
Cf. A384285 (J_25 volume), A384286 (J_25 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[5 + Sqrt[20]] - Sqrt[5] - 1)/Sqrt[3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J24", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((sqrt(5 + 2*sqrt(5)) - sqrt(5) - 1)/sqrt(3)) = arccos((sqrt(5 + A010476) - A002163 - 1)/A002194).
Equals A387608 - A386852.
Equals A387609 - A195693.
Showing 1-9 of 9 results.