A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A371693
G.f. satisfies A(x) = ( 1 + x * A(x) * (1 + A(x)) )^2.
Original entry on oeis.org
1, 4, 28, 248, 2480, 26688, 301648, 3531424, 42449088, 520858496, 6497190528, 82146802944, 1050370074624, 13559126110720, 176469550681344, 2313050095245824, 30506619439926272, 404558181197010944, 5391161355764205568, 72156618656648237056, 969557980700415827968
Offset: 0
-
a(n, r=2, t=2, u=2) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A378237
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+3*r+k,n)/(n+3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 6, 24, 74, 0, 1, 8, 42, 188, 642, 0, 1, 10, 64, 350, 1680, 6082, 0, 1, 12, 90, 568, 3234, 16212, 60970, 0, 1, 14, 120, 850, 5440, 31878, 164584, 635818, 0, 1, 16, 154, 1204, 8450, 54888, 328426, 1732172, 6826690, 0, 1, 18, 192, 1638, 12432, 87402, 574848, 3494142, 18728352, 74958914, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 10, 24, 42, 64, 90, 120, ...
0, 74, 188, 350, 568, 850, 1204, ...
0, 642, 1680, 3234, 5440, 8450, 12432, ...
0, 6082, 16212, 31878, 54888, 87402, 131964, ...
0, 60970, 164584, 328426, 574848, 931770, 1433544, ...
-
T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378236
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+2*r+k,n)/(n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 20, 44, 0, 1, 8, 36, 120, 280, 0, 1, 10, 56, 236, 800, 1936, 0, 1, 12, 80, 400, 1656, 5696, 14128, 0, 1, 14, 108, 620, 2960, 12192, 42416, 107088, 0, 1, 16, 140, 904, 4840, 22592, 92960, 326304, 834912, 0, 1, 18, 176, 1260, 7440, 38352, 176800, 727824, 2572992, 6652608, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
-
T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378240
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+3*r+k,n)/(3*n+3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 18, 0, 1, 6, 40, 234, 0, 1, 8, 66, 540, 3570, 0, 1, 10, 96, 926, 8400, 59586, 0, 1, 12, 130, 1400, 14706, 141876, 1053570, 0, 1, 14, 168, 1970, 22720, 251622, 2528760, 19392490, 0, 1, 16, 210, 2644, 32690, 394152, 4524786, 46815116, 367677090, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 18, 40, 66, 96, 130, 168, ...
0, 234, 540, 926, 1400, 1970, 2644, ...
0, 3570, 8400, 14706, 22720, 32690, 44880, ...
0, 59586, 141876, 251622, 394152, 575402, 801948, ...
0, 1053570, 2528760, 4524786, 7156128, 10553970, 14867704, ...
-
T(n, k, t=3, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Showing 1-5 of 5 results.