A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378239
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*n+2*r+k,n)/(2*n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 12, 0, 1, 6, 28, 100, 0, 1, 8, 48, 248, 968, 0, 1, 10, 72, 452, 2480, 10208, 0, 1, 12, 100, 720, 4680, 26688, 113792, 0, 1, 14, 132, 1060, 7728, 51504, 301648, 1318832, 0, 1, 16, 168, 1480, 11800, 87104, 591312, 3531424, 15732064, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 12, 28, 48, 72, 100, 132, ...
0, 100, 248, 452, 720, 1060, 1480, ...
0, 968, 2480, 4680, 7728, 11800, 17088, ...
0, 10208, 26688, 51504, 87104, 136352, 202560, ...
0, 113792, 301648, 591312, 1017184, 1621280, 2454256, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378236
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+2*r+k,n)/(n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 20, 44, 0, 1, 8, 36, 120, 280, 0, 1, 10, 56, 236, 800, 1936, 0, 1, 12, 80, 400, 1656, 5696, 14128, 0, 1, 14, 108, 620, 2960, 12192, 42416, 107088, 0, 1, 16, 140, 904, 4840, 22592, 92960, 326304, 834912, 0, 1, 18, 176, 1260, 7440, 38352, 176800, 727824, 2572992, 6652608, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
-
T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378240
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+3*r+k,n)/(3*n+3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 18, 0, 1, 6, 40, 234, 0, 1, 8, 66, 540, 3570, 0, 1, 10, 96, 926, 8400, 59586, 0, 1, 12, 130, 1400, 14706, 141876, 1053570, 0, 1, 14, 168, 1970, 22720, 251622, 2528760, 19392490, 0, 1, 16, 210, 2644, 32690, 394152, 4524786, 46815116, 367677090, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 18, 40, 66, 96, 130, 168, ...
0, 234, 540, 926, 1400, 1970, 2644, ...
0, 3570, 8400, 14706, 22720, 32690, 44880, ...
0, 59586, 141876, 251622, 394152, 575402, 801948, ...
0, 1053570, 2528760, 4524786, 7156128, 10553970, 14867704, ...
-
T(n, k, t=3, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378291
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3*n-2*r+k,r) * binomial(r,n-r)/(3*n-2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 6, 0, 1, 4, 9, 16, 20, 0, 1, 5, 14, 31, 56, 72, 0, 1, 6, 20, 52, 114, 208, 273, 0, 1, 7, 27, 80, 201, 438, 806, 1073, 0, 1, 8, 35, 116, 325, 800, 1739, 3220, 4333, 0, 1, 9, 44, 161, 495, 1341, 3260, 7077, 13168, 17869, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 6, 16, 31, 52, 80, 116, ...
0, 20, 56, 114, 201, 325, 495, ...
0, 72, 208, 438, 800, 1341, 2118, ...
0, 273, 806, 1739, 3260, 5615, 9119, ...
-
T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Showing 1-5 of 5 results.