A378289
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n+r+k,r) * binomial(r,n-r)/(n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 10, 0, 1, 4, 12, 26, 38, 0, 1, 5, 18, 49, 105, 154, 0, 1, 6, 25, 80, 210, 444, 654, 0, 1, 7, 33, 120, 363, 927, 1944, 2871, 0, 1, 8, 42, 170, 575, 1672, 4191, 8734, 12925, 0, 1, 9, 52, 231, 858, 2761, 7810, 19305, 40040, 59345, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 10, 26, 49, 80, 120, 170, ...
0, 38, 105, 210, 363, 575, 858, ...
0, 154, 444, 927, 1672, 2761, 4290, ...
0, 654, 1944, 4191, 7810, 13325, 21385, ...
-
T(n, k, t=2, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378290
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n+2*r+k,r) * binomial(r,n-r)/(n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 19, 0, 1, 4, 15, 46, 104, 0, 1, 5, 22, 82, 262, 614, 0, 1, 6, 30, 128, 486, 1588, 3816, 0, 1, 7, 39, 185, 789, 3027, 10053, 24595, 0, 1, 8, 49, 254, 1185, 5052, 19543, 65686, 162896, 0, 1, 9, 60, 336, 1689, 7801, 33290, 129606, 439658, 1101922, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 19, 46, 82, 128, 185, 254, ...
0, 104, 262, 486, 789, 1185, 1689, ...
0, 614, 1588, 3027, 5052, 7801, 11430, ...
0, 3816, 10053, 19543, 33290, 52490, 78552, ...
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378292
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 46, 0, 1, 5, 18, 52, 123, 207, 0, 1, 6, 25, 84, 240, 572, 979, 0, 1, 7, 33, 125, 407, 1155, 2769, 4797, 0, 1, 8, 42, 176, 635, 2028, 5733, 13806, 24138, 0, 1, 9, 52, 238, 936, 3276, 10332, 29136, 70414, 123998, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 11, 28, 52, 84, 125, 176, ...
0, 46, 123, 240, 407, 635, 936, ...
0, 207, 572, 1155, 2028, 3276, 4998, ...
0, 979, 2769, 5733, 10332, 17140, 26860, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Showing 1-3 of 3 results.