A378271 Number of partitions of 1 into {1/1^3, 1/2^3, 1/3^3, ..., 1/n^3}.
1, 2, 3, 11, 12, 435, 436, 6748, 42360, 1252676, 1252677, 302302546, 302302547
Offset: 1
Examples
a(4) = 11 because we have 64 * (1/64) = 56 * (1/64) + 1/8 = 48 * (1/64) + 2 * (1/8) = 40 * (1/64) + 3 * (1/8) = 32 * (1/64) + 4 * (1/8) = 24 * (1/64) + 5 * (1/8) = 16 * (1/64) + 6 * (1/8) = 8 * (1/64) + 7 * (1/8) = 27 * (1/27) = 8 * (1/8) = 1.
Formula
a(p) = a(p-1) + 1 for prime p. - Jinyuan Wang, Dec 11 2024
Extensions
a(9)-a(13) from Jinyuan Wang, Dec 11 2024