A378275 Numbers m which satisfy the equation: (m - floor((m - k)/k)) mod k = 1 (1 <= k <= m) only for k = 2 and m - 1.
3, 4, 7, 11, 19, 23, 59, 83, 167, 227, 491, 659, 839, 983, 1019, 1091, 1319, 1459, 1523, 1847, 2179, 2503, 2963, 3719, 3767, 4519, 4871, 4919, 5059, 6563, 9239, 9419, 10883, 12107, 12539, 14891, 15383, 20071, 20747, 23819, 25219, 26759, 33851, 35591, 37379, 45191
Offset: 1
Keywords
Examples
Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins: i\j | 1 2 3 4 5 6 7 8 9 ... -----+------------------ 1 | 0 2 | 0 0 3 | 0 1 0 4 | 0 1 1 0 5 | 0 0 2 1 0 6 | 0 0 2 2 1 0 7 | 0 1 0 3 2 1 0 8 | 0 1 1 3 3 2 1 0 9 | 0 0 1 0 4 3 2 1 0 ... The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end). 7 is in this sequence because the only k's satisfying the equation (7 - floor((7 - k)/k)) mod k = 1 are 2 and (7-1).
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..3000
Programs
-
Maxima
(f(i, j):=mod((i-floor((i-j)/j)), j), (n:3, for t:7 thru 100000 step 4 do (for k:3 while f(t, k)#1 and k
-
PARI
is(m) = if(m%4==3, for(k=3, m\2, if((m-m\k)%k==0, return(0))); 1, m==4); \\ Jinyuan Wang, Jan 14 2025
Comments