cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378567 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+3*k-1,n-k).

Original entry on oeis.org

1, 1, 11, 88, 715, 5951, 50288, 429696, 3702987, 32125390, 280211701, 2454992618, 21588647392, 190444368401, 1684556756320, 14935618142768, 132695019071499, 1181070210132582, 10529299131757754, 94005323670592130, 840373149466892965, 7521508912742542806
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[ 1/(1 - x/(1 - x)^4)^n,{x,0,n}]; Array[a,22,0] (* Stefano Spezia, Dec 01 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+3*k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^4)^n.

A378566 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+2*k-1,n-k).

Original entry on oeis.org

1, 1, 9, 64, 465, 3456, 26082, 199060, 1532313, 11875015, 92528414, 724187982, 5689127886, 44834549501, 354289977750, 2806262293824, 22273793685609, 177113634045858, 1410633764438967, 11251419724586850, 89860413370562730, 718528004169570925
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+2*k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^3)^n.
Showing 1-2 of 2 results.