cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367234 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x))^4.

Original entry on oeis.org

1, 1, 6, 35, 226, 1561, 11276, 84150, 643730, 5021038, 39781858, 319282210, 2590312872, 21208628405, 175024439504, 1454329099044, 12157356271998, 102170610282040, 862721635191860, 7315768816166027, 62274763166575410, 531950072655682896, 4558282056420235664
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=4, t=2, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
From Seiichi Manyama, Dec 01 2024: (Start)
G.f.: exp( Sum_{k>=1} A378567(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x)^4)^(n+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x/(1 - x)^4) ). (End)

A378565 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+k-1,n-k).

Original entry on oeis.org

1, 1, 7, 43, 271, 1746, 11425, 75615, 504799, 3392953, 22930282, 155664356, 1060710457, 7250779238, 49700101101, 341474150583, 2351032782783, 16216401440106, 112035931072915, 775163096510445, 5370301986029066, 37249469056575504, 258648802856972348
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k-1, k] * Binomial[n+k-1, 2*k-1], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Dec 01 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^2)^n.
a(n) ~ (525 - 32*210^(2/3)/(157*sqrt(105) - 1575)^(1/3) + 4*(210*(157*sqrt(105) - 1575))^(1/3))^(1/6) * ((36 + (1208682 - 28350*sqrt(105))^(1/3)/3 + (6*(7461 + 175*sqrt(105)))^(1/3))^n / (2^(2/3) * 7^(1/3) * sqrt(Pi*n) * 3^(n + 1/6) * 5^(n + 1/3))). - Vaclav Kotesovec, Dec 01 2024

A378566 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+2*k-1,n-k).

Original entry on oeis.org

1, 1, 9, 64, 465, 3456, 26082, 199060, 1532313, 11875015, 92528414, 724187982, 5689127886, 44834549501, 354289977750, 2806262293824, 22273793685609, 177113634045858, 1410633764438967, 11251419724586850, 89860413370562730, 718528004169570925
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+2*k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^3)^n.
Showing 1-3 of 3 results.