A367235 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^4.
1, 1, 7, 50, 399, 3422, 30798, 286974, 2744947, 26798010, 265945022, 2674970684, 27209385886, 279412999031, 2892787737002, 30161921520976, 316440334960563, 3338105334701396, 35385133077851602, 376732207920371784, 4026682585718602014
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..946
Programs
-
PARI
a(n, s=4, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
Formula
If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).