cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378607 Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).

Original entry on oeis.org

1, 0, -1, -2, -1, 0, -3, -6, -7, 0, -1, 2, -3, 0, 1, -14, -1, 0, -3, 2, 3, 0, -5, 6, -11, 0, -25, 6, -1, 0, -5, -30, 1, 0, 3, 14, -3, 0, 3, 6, -1, 0, -3, 2, 7, 0, -5, 14, -31, 0, 1, 6, -5, 0, 1, 18, 3, 0, -1, -2, -5, 0, 21, -62, 3, 0, -3, 2, 5, 0, -1, 42, -5, 0, 11, 6, 3, 0, -3, 14, -79, 0, -5, -6, 1, 0, 1, 6, -7, 0, 9, 10
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A000203, A003961, A016825, A151800, A346234, A378606 (Dirichlet inverse).
Inverse Möbius transform of A349388.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - NextPrime[p]*(p^e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 12 2025 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A346234(n) = (moebius(n)*A003961(n));
    A378607(n) = sumdiv(n,d,sigma(d)*A346234(n/d));

Formula

a(n) = Sum_{d|n} A000203(d)*A346234(n/d).
a(n) = Sum_{d|n} A349388(d).
Multiplicative with a(p^e) = (p^(e+1) - nextprime(p)*(p^e-1) - 1)/(p-1), where nextprime(p) = A151800(p). - Amiram Eldar, Jan 12 2025