cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349388 Dirichlet convolution of A000027 with A346234 (Dirichlet inverse of A003961), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, -1, -2, -2, -2, 2, -4, -4, -6, 2, -2, 4, -4, 4, 4, -8, -2, 6, -4, 4, 8, 2, -6, 8, -10, 4, -18, 8, -2, -4, -6, -16, 4, 2, 8, 12, -4, 4, 8, 8, -2, -8, -4, 4, 12, 6, -6, 16, -28, 10, 4, 8, -6, 18, 4, 16, 8, 2, -2, -8, -6, 6, 24, -32, 8, -4, -4, 4, 12, -8, -2, 24, -6, 4, 20, 8, 8, -8, -4, 16, -54, 2, -6, -16, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Multiplicative because A000027 and A346234 are.

Crossrefs

Cf. A000027, A000040, A001223, A003961, A151800, A346234, A349387 (Dirichlet inverse), A349389 (sum with it), A378607 (inverse Möbius transform).
Cf. also A347238.

Programs

  • Mathematica
    f[p_, e_] := p^e - NextPrime[p] * p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A346234(n) = (moebius(n)*A003961(n));
    A349388(n) = sumdiv(n,d,d*A346234(n/d));

Formula

a(n) = Sum_{d|n} d * A346234(n/d).
For all n >= 1, a(A000040(n)) = -A001223(n).
Multiplicative with a(p^e) = p^e - nextprime(p) * p^(e-1), where nextprime function is A151800. - Amiram Eldar, Nov 18 2021

A378606 Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 3, 6, 8, 0, 1, 2, 3, 0, 1, 18, 1, 0, 3, 2, 3, 0, 5, 6, 12, 0, 40, 6, 1, 0, 5, 54, 1, 0, 3, 16, 3, 0, 3, 6, 1, 0, 3, 2, 8, 0, 5, 18, 40, 0, 1, 6, 5, 0, 1, 18, 3, 0, 1, 2, 5, 0, 24, 162, 3, 0, 3, 2, 5, 0, 1, 48, 5, 0, 12, 6, 3, 0, 3, 18, 200, 0, 5, 6, 1, 0, 1, 6, 7, 0, 9, 10, 5, 0, 3, 54, 3, 0, 8, 24
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378606(n) = sumdiv(n,d,A046692(d)*A003961(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A003961(n/d).
a(n) = Sum_{d|n} A008683(d)*A349387(n/d).
Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - Amiram Eldar, Dec 11 2024
Showing 1-2 of 2 results.