cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378382 Number of maximal chains in the poset of all binary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0.

Original entry on oeis.org

1, 1, 2, 5, 16, 57, 226, 961, 4376, 21041, 106534, 563961, 3112924, 17839993, 105907946, 649432673, 4105783696, 26706965985, 178466243662, 1223248786921, 8589272300516, 61708802126441, 453143009601682, 3397715981566545, 25990997059282456, 202666687407866257
Offset: 0

Views

Author

John Tyler Rascoe, Nov 26 2024

Keywords

Examples

			a(3) = 5:
 () < (0) < (0,0) < (0,0,0),
 () < (0) < (0,0) < (0,1),
 () < (0) < (0,0) < (1,0),
 () < (0) < (1) < (0,1),
 () < (0) < (1) < (1,0).
		

Crossrefs

Cf. A034841, A143672, A282698, A317145, column k=2 of A378588, A378608.

Programs

  • Python
    def mchains(n, k): return # See A378588
    def A378382_list(max_n): return mchains(max_n,2)

A378588 Triangle read by rows: T(n,k) is the number of maximal chains in the poset of all k-ary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 16, 22, 23, 1, 57, 94, 102, 103, 1, 226, 446, 507, 517, 518, 1, 961, 2308, 2764, 2855, 2867, 2868, 1, 4376, 12900, 16333, 17121, 17248, 17262, 17263, 1, 21041, 77092, 103666, 110487, 111739, 111908, 111924, 111925, 1, 106534, 489430, 701819, 761751, 773888, 775758, 775975, 775993, 775994, 1, 563961, 3282956, 5038344, 5578041, 5696293, 5716382, 5719046, 5719317, 5719337, 5719338
Offset: 1

Views

Author

John Tyler Rascoe, Dec 01 2024

Keywords

Examples

			Triangle begins:
   k=1    2     3     4     5     6     7
 n=1 1;
 n=2 1,   2;
 n=3 1,   5,    6;
 n=4 1,  16,   22,   23;
 n=5 1,  57,   94,  102,  103;
 n=6 1, 226,  446,  507,  517,  518;
 n=7 1, 961, 2308, 2764, 2855, 2867, 2868;
 ...
T(3,3) = 6:
 () < (1) < (1,1) < (1,1,1),
 () < (1) < (1,1) < (1,2),
 () < (1) < (1,1) < (2,1),
 () < (1) < (2) < (1,2),
 () < (1) < (2) < (2,1),
 () < (1) < (2) < (3).
		

Crossrefs

Cf. A034841, A143672, A282698, A317145, column k=2 A378382, main diagonal A378608.

Programs

  • Python
    def mchains(n,k):
        B,d1,S1 = [1,1],{(1,): 1},{(1,)}
        for i in range(n-1):
            d2,S2 = dict(),set()
            for j in S1:
                for x in [j+(1,), (1,)+j]+[j[:z]+tuple([j[z]+1])+j[z+1:] for z in range(len(j)) if j[z] < k]:
                    if x not in S2: S2.add(x); d2[x] = d1[j]
                    elif x != tuple([1]*(i+2)): d2[x] += d1[j]
            B.append(sum(d2.values())); d1 = d2; S1 = S2
        return B[:n+1]
    def A378588_list(max_n):
        B = [mchains(max_n,i+1) for i in range(max_n)]
        return [[B[k][j+1] for k in range(j+1)] for j in range(max_n)]

Formula

T(n,k) = T(n,n) for k > n.
Showing 1-2 of 2 results.