cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378588 Triangle read by rows: T(n,k) is the number of maximal chains in the poset of all k-ary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 16, 22, 23, 1, 57, 94, 102, 103, 1, 226, 446, 507, 517, 518, 1, 961, 2308, 2764, 2855, 2867, 2868, 1, 4376, 12900, 16333, 17121, 17248, 17262, 17263, 1, 21041, 77092, 103666, 110487, 111739, 111908, 111924, 111925, 1, 106534, 489430, 701819, 761751, 773888, 775758, 775975, 775993, 775994, 1, 563961, 3282956, 5038344, 5578041, 5696293, 5716382, 5719046, 5719317, 5719337, 5719338
Offset: 1

Views

Author

John Tyler Rascoe, Dec 01 2024

Keywords

Examples

			Triangle begins:
   k=1    2     3     4     5     6     7
 n=1 1;
 n=2 1,   2;
 n=3 1,   5,    6;
 n=4 1,  16,   22,   23;
 n=5 1,  57,   94,  102,  103;
 n=6 1, 226,  446,  507,  517,  518;
 n=7 1, 961, 2308, 2764, 2855, 2867, 2868;
 ...
T(3,3) = 6:
 () < (1) < (1,1) < (1,1,1),
 () < (1) < (1,1) < (1,2),
 () < (1) < (1,1) < (2,1),
 () < (1) < (2) < (1,2),
 () < (1) < (2) < (2,1),
 () < (1) < (2) < (3).
		

Crossrefs

Cf. A034841, A143672, A282698, A317145, column k=2 A378382, main diagonal A378608.

Programs

  • Python
    def mchains(n,k):
        B,d1,S1 = [1,1],{(1,): 1},{(1,)}
        for i in range(n-1):
            d2,S2 = dict(),set()
            for j in S1:
                for x in [j+(1,), (1,)+j]+[j[:z]+tuple([j[z]+1])+j[z+1:] for z in range(len(j)) if j[z] < k]:
                    if x not in S2: S2.add(x); d2[x] = d1[j]
                    elif x != tuple([1]*(i+2)): d2[x] += d1[j]
            B.append(sum(d2.values())); d1 = d2; S1 = S2
        return B[:n+1]
    def A378588_list(max_n):
        B = [mchains(max_n,i+1) for i in range(max_n)]
        return [[B[k][j+1] for k in range(j+1)] for j in range(max_n)]

Formula

T(n,k) = T(n,n) for k > n.

A378608 Number of maximal chains in the poset of all n-ary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0.

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 518, 2868, 17263, 111925, 775994, 5719338, 44592007, 366259499, 3157877470, 28492791496, 268307662047, 2630577754281, 26795670672626, 283038010150702, 3094882721541239, 34977231456293519, 407991690851302646, 4905431774834649852, 60721792897771836879
Offset: 0

Views

Author

John Tyler Rascoe, Dec 01 2024

Keywords

Examples

			a(3) = 6:
  () < (1) < (1,1) < (1,1,1),
  () < (1) < (1,1) < (1,2),
  () < (1) < (1,1) < (2,1),
  () < (1) < (2) < (1,2),
  () < (1) < (2) < (2,1),
  () < (1) < (2) < (3).
		

Crossrefs

Cf. A034841, A143672, A282698, A317145, A378382, main diagonal of A378588.

Programs

  • Python
    def mchains(n,k): return # See A378588
    def A378608_list(max_n): return mchains(max_n,max_n)

A377135 Number of maximal chains in the poset of n-ary words of length n ordered by B covers A iff A_i <= B_i for 1 <= i <= n.

Original entry on oeis.org

1, 1, 2, 90, 369600, 305540235000, 88832646059788350720, 14007180988362844601443040716800, 1707750599894443404262670865631874246246400000, 217425846656446788579638892849417587480505167467321080630000000
Offset: 0

Views

Author

John Tyler Rascoe, Nov 26 2024

Keywords

Comments

Terms are divisible by n for n > 0.

Examples

			For a(2) = (1,1) < (2,1) < (2,2), (1,1) < (1,2) < (2,2).
For n = 3 one chain is (1,1,1) < (1,2,1) < (1,2,2) < (1,2,3) < (1,3,3) < (2,3,3) < (3,3,3).
		

Crossrefs

Programs

  • Maple
    a:= n-> (t-> (n*t)!/t!^n)(max(n-1, 0)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Nov 27 2024
  • Mathematica
    a[n_]:=Product[Binomial[(n-1)*(n-i),n-1],{i,0,n-2}]; Array[a,10,0] (* Stefano Spezia, Nov 27 2024 *)
  • PARI
    a(n) = {if(n<1,1,(n*(n-1))!/(n-1)!^n)}

Formula

a(n) = Product_{i=0..n-2} binomial((n-1)*(n-i),n-1).
a(n) = (n*(n-1))!/(n-1)!^n for n>=1, a(0)=1. - Alois P. Heinz, Nov 27 2024
Showing 1-3 of 3 results.