cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351587 Number of minimal edge covers in the n-cycle complement graph.

Original entry on oeis.org

0, 1, 5, 25, 133, 859, 5781, 40923, 313005, 2541251, 21725314, 195840223, 1855631053, 18408258491, 190764140901, 2060930694871, 23161639995126, 270260975209117, 3268719600517612, 40914280736043141, 529233440391510248, 7065125832189189159, 97221637266999732570
Offset: 3

Views

Author

Eric W. Weisstein, Feb 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(i=0, n\2, sum(j=0, (n-2*i)\3, my(r=n-2*i-3*j, g=exp(x + O(x*x^r))); (-1)^i*n*((n-i-2*j-1)!/(i!*j!))*polcoef((2*g-1)^i*exp(j*x -x - x^2/2 + x*g), r)))} \\ Andrew Howroyd, Jun 14 2025

Formula

a(n) = Sum_{i=0..floor(n/2)} Sum{j=0..floor((n-2*i)/3)} (-1)^i * n * ((n-i-2*j-1)! / (i!*j!)) * [x^(n-2*i-3*j)] ((2*exp(x)-1)^i * exp(x)^j * exp(-x - x^2/2 + x*exp(x))). - Andrew Howroyd, Jun 14 2025

Extensions

a(9)-a(12) from Andrew Howroyd, Feb 21 2022
a(13) onwards from Andrew Howroyd, Jun 14 2025

A356212 Number of edge covers in the n-cycle complement graph bar C_n.

Original entry on oeis.org

0, 1, 11, 263, 10965, 828185, 117206551, 31833062131, 16861895760945, 17600261657295445, 36430086149957824355, 150088723046184226003199, 1233420904097181936354336237, 20242863089169097481278428598961, 663925026643212111959892436105140751, 43532228537929216561827941013608880940843
Offset: 3

Views

Author

Eric W. Weisstein, Jul 29 2022

Keywords

Crossrefs

Extensions

a(10) onwards from Andrew Howroyd, Dec 12 2024
Showing 1-2 of 2 results.