cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378922 Number of minimal edge cuts in the n-antiprism graph.

Original entry on oeis.org

1, 1, 7, 28, 81, 191, 391, 722, 1233, 1981, 3031, 4456, 6337, 8763, 11831, 15646, 20321, 25977, 32743, 40756, 50161, 61111, 73767, 88298, 104881, 123701, 144951, 168832, 195553, 225331, 258391, 294966, 335297, 379633, 428231, 481356, 539281, 602287, 670663, 744706, 824721
Offset: 0

Views

Author

Eric W. Weisstein, Dec 11 2024

Keywords

Comments

The n-antiprism graph is defined for n >= 3. The sequence has been extended to n = 0 using the formula. - Andrew Howroyd, Jun 09 2025

Crossrefs

Cf. A359620.

Programs

  • PARI
    a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6 \\ Andrew Howroyd, Jun 09 2025

Formula

From Andrew Howroyd, Jun 09 2025: (Start)
a(n) = 1 + 2*n*(n-1) + n^2*(n-1)*(2*n-1)/6.
a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6. (End)
From Elmo R. Oliveira, Sep 03 2025: (Start)
G.f.: (1 - 4*x + 12*x^2 - 7*x^3 + 6*x^4)/(1-x)^5.
E.g.f.: (6 + 18*x^2 + 9*x^3 + 2*x^4)*exp(x)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)

Extensions

a(0)-a(2) prepended and a(7) onwards from Andrew Howroyd, Jun 09 2025