cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A297114 Möbius transform of A294898, where A294898 is deficiency minus binary weight.

Original entry on oeis.org

0, 0, 0, 0, 2, -2, 3, 0, 3, -2, 7, -4, 9, -2, 0, 0, 14, -6, 15, -4, 4, -2, 18, -8, 14, -2, 7, -4, 24, -14, 25, 0, 9, -2, 14, -12, 33, -2, 9, -8, 37, -18, 38, -4, 3, -2, 41, -16, 35, -10, 12, -4, 48, -18, 24, -8, 15, -2, 53, -28, 55, -2, 6, 0, 33, -26, 63, -4, 21, -22, 66, -24, 69, -2, 6, -4, 44, -30, 73, -16, 28, -2
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] (2 # - DigitCount[2 #, 2, 1] - DivisorSigma[1, #]) &], {n, 82}] (* Michael De Vlieger, Mar 11 2019 *)
  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A297114(n) = sumdiv(n,d,moebius(n/d)*(A005187(d)-sigma(d)));

Formula

a(n) = Sum_{d|n} A008683(n/d)*A294898(d).
a(n) = A297111(n) - n.
a(n) = A297117(n) - A051953(n).
a(n) = A083254(n) - A297115(n).
a(2n) = A083254(2n) = A378986(n) = -2*A176095(n).
a(n) = A294898(n) - A317844(n).

A379011 Square array A(n, k) = 2*phi(A246278(n, k)) - A246278(n, k), read by falling antidiagonals; A083254, (2*phi(n)-n), applied to the prime shift array.

Original entry on oeis.org

0, 0, 1, -2, 3, 3, 0, 1, 15, 5, -2, 9, 13, 35, 9, -4, 3, 75, 43, 99, 11, -2, 3, 25, 245, 97, 143, 15, 0, 7, 65, 53, 1089, 163, 255, 17, -6, 27, 31, 301, 133, 1859, 253, 323, 21, -4, 5, 375, 73, 1067, 185, 4335, 355, 483, 27, -2, 9, 91, 1715, 151, 2119, 313, 6137, 565, 783, 29, -8, 9, 125, 473, 11979, 229, 4301, 457, 11109, 781, 899, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Comments

Each column is strictly increasing.

Examples

			The top left corner of the array:
k=  |  1    2    3      4    5      6    7       8      9     10   11      12
2k= |  2    4    6      8   10     12   14      16     18     20   22      24
----+-------------------------------------------------------------------------
  1 |  0,   0,  -2,     0,  -2,    -4,  -2,      0,    -6,    -4,  -2,     -8,
  2 |  1,   3,   1,     9,   3,     3,   7,     27,     5,     9,   9,      9,
  3 |  3,  15,  13,    75,  25,    65,  31,    375,    91,   125,  43,    325,
  4 |  5,  35,  43,   245,  53,   301,  73,   1715,   473,   371,  83,   2107,
  5 |  9,  99,  97,  1089, 133,  1067, 151,  11979,  1261,  1463, 187,  11737,
  6 | 11, 143, 163,  1859, 185,  2119, 229,  24167,  2771,  2405, 295,  27547,
  7 | 15, 255, 253,  4335, 313,  4301, 403,  73695,  4807,  5321, 433,  73117,
  8 | 17, 323, 355,  6137, 457,  6745, 491, 116603,  8165,  8683, 593, 128155,
  9 | 21, 483, 565, 11109, 607, 12995, 733, 255507, 16385, 13961, 817, 298885,
		

Crossrefs

Cf. A040976 (column 1), A378986 (row 1).
Cf. also A378979.

Programs

  • PARI
    up_to = 11325; \\ = binomial(150+1,2)
    A083254(n) = (2*eulerphi(n)-n);
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379011sq(row,col) = A083254(A246278sq(row,col));
    A379011list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379011sq(col,(a-(col-1))))); (v); };
    v379011 = A379011list(up_to);
    A379011(n) = v379011[n];

Formula

A(n, k) = 2*A379010(n, k) - A246278(n, k).

A378987 Odd bisection of A083254, where A083254(n) = 2*phi(n)-n.

Original entry on oeis.org

1, 1, 3, 5, 3, 9, 11, 1, 15, 17, 3, 21, 15, 9, 27, 29, 7, 13, 35, 9, 39, 41, 3, 45, 35, 13, 51, 25, 15, 57, 59, 9, 31, 65, 19, 69, 71, 5, 43, 77, 27, 81, 43, 25, 87, 53, 27, 49, 95, 21, 99, 101, -9, 105, 107, 33, 111, 61, 27, 73, 99, 37, 75, 125, 39, 129, 83, 9, 135, 137, 43, 97, 79, 21, 147, 149, 39, 85, 155, 49, 103, 161, -5, 165
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Crossrefs

Cf. also A378986 (the other bisection).

Programs

Formula

a(n) = A083254(2*n-1).
a(n) = A337544(A064216(n)).
Showing 1-3 of 3 results.