cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A040976 a(n) = prime(n) - 2.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 71, 77, 81, 87, 95, 99, 101, 105, 107, 111, 125, 129, 135, 137, 147, 149, 155, 161, 165, 171, 177, 179, 189, 191, 195, 197, 209, 221, 225, 227, 231, 237, 239, 249, 255, 261
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k! reduced mod (k+2) is 1. - Benoit Cloitre, Mar 11 2002
The first a(n) numbers starting from 2 are divisible by primes up to prime(n-1). - Lekraj Beedassy, Jun 21 2006
The terms in this sequence are the cumulative sums of distances from one prime to another. For example for the distance from the first to 26th prime, 2 to 101, the cumulative sum of distances is 99, always the last prime, here 101, minus 2. - Enoch Haga, Apr 24 2006
The primes in this sequence are the initial primes of twin prime pairs. - Sebastiao Antonio da Silva, Dec 21 2008
Note that many, but not all, of these numbers satisfy x such that x^(x+1) = 1 mod (x+2). The first exception is 339. - Thomas Ordowski, Nov 27 2013
If this sequence had an infinite number of primes, the twin prime conjecture would follow. Sequence holds all primes in A001359. - John W. Nicholson, Apr 14 2014
From Bernard Schott, Feb 19 2023: (Start)
Equivalently, except for a(1)=0, all terms are odd integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has only two elements.
For each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 2, so this unique AP is (2, 2+d) = (2, prime(m)) with m > 1; so, first examples are (2,3), (2,5), (2,7), (2,11), ... next elements should be respectively: 4, 8, 12, 20, ... that are all composite numbers.
Similar sequence with even common differences d is A360735.
This subsequence of A359408 corresponds to the first case: '2 is prime'; second case corresponding to the even common differences d is A360735. (End)

Examples

			a(13) = 39, because A000040(13) = 41.
		

Crossrefs

Equals A359408 \ A360735.
First column of A086800, and of A379011, last diagonal of A090321, and of A162621.
See also irregular triangles A103728, A319148, A369497.

Programs

Formula

a(n) = A000040(n) - 2 = Sum_{i=1..n-1} A001223(i).
For n > 2: A092953(a(n)) = 1. - Reinhard Zumkeller, Nov 10 2012
If m is a term then A123556(m) = 2, but the converse is false: a counterexample is A123556(16) = 2 and 16 is not a term. - Bernard Schott, Feb 19 2023
a(n) = Sum_{k = 2..floor(2n*log(n)+2)} (1-floor(A000720(k)/n)). [Ruiz and Sondow]. - Elias Alejandro Angulo Klein, Apr 09 2024

A379010 Square array A(n, k) = phi(A246278(n, k)), read by falling antidiagonals; Euler totient function applied to the prime shift array.

Original entry on oeis.org

1, 2, 2, 2, 6, 4, 4, 8, 20, 6, 4, 18, 24, 42, 10, 4, 12, 100, 60, 110, 12, 6, 24, 40, 294, 120, 156, 16, 8, 20, 120, 72, 1210, 192, 272, 18, 6, 54, 48, 420, 160, 2028, 288, 342, 22, 8, 40, 500, 96, 1320, 216, 4624, 396, 506, 28, 10, 36, 168, 2058, 180, 2496, 352, 6498, 616, 812, 30, 8, 24, 200, 660, 13310, 264, 4896, 504, 11638, 840, 930, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Comments

Each column is strictly increasing.

Examples

			The top left corner of the array:
k=  |  1     2     3      4     5      6     7        8      9     10
2k= |  2     4     6      8    10     12    14       16     18     20
----+-------------------------------------------------------------------
1   |  1,    2,    2,     4,    4,     4,    6,       8,     6,     8,
2   |  2,    6,    8,    18,   12,    24,   20,      54,    40,    36,
3   |  4,   20,   24,   100,   40,   120,   48,     500,   168,   200,
4   |  6,   42,   60,   294,   72,   420,   96,    2058,   660,   504,
5   | 10,  110,  120,  1210,  160,  1320,  180,   13310,  1560,  1760,
6   | 12,  156,  192,  2028,  216,  2496,  264,   26364,  3264,  2808,
7   | 16,  272,  288,  4624,  352,  4896,  448,   78608,  5472,  5984,
8   | 18,  342,  396,  6498,  504,  7524,  540,  123462,  9108,  9576,
9   | 22,  506,  616, 11638,  660, 14168,  792,  267674, 17864, 15180,
10  | 28,  812,  840, 23548, 1008, 24360, 1120,  682892, 26040, 29232,
11  | 30,  930, 1080, 28830, 1200, 33480, 1260,  893730, 39960, 37200,
12  | 36, 1332, 1440, 49284, 1512, 53280, 1656, 1823508, 59040, 55944,
		

Crossrefs

Cf. A062570 (row 1), A006093 (column 1), A036689 (column 2), A083553 (column 3), A135177 (column 4).

Programs

  • PARI
    up_to = 11325; \\ = binomial(150+1,2)
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379010sq(row,col) = eulerphi(A246278sq(row,col));
    A379010list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379010sq(col,(a-(col-1))))); (v); };
    v379010 = A379010list(up_to);
    A379010(n) = v379010[n];

A378986 a(n) = 2*phi(2*n) - 2*n, where phi is Euler totient function.

Original entry on oeis.org

0, 0, -2, 0, -2, -4, -2, 0, -6, -4, -2, -8, -2, -4, -14, 0, -2, -12, -2, -8, -18, -4, -2, -16, -10, -4, -18, -8, -2, -28, -2, 0, -26, -4, -22, -24, -2, -4, -30, -16, -2, -36, -2, -8, -42, -4, -2, -32, -14, -20, -38, -8, -2, -36, -30, -16, -42, -4, -2, -56, -2, -4, -54, 0, -34, -52, -2, -8, -50, -44, -2, -48, -2, -4
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Crossrefs

Even bisection of A083254, and of A297114.
First row of A379011.
Cf. also A378987.

Programs

  • PARI
    A378986(n) = (2*eulerphi(2*n)-(2*n));

Formula

a(n) = 2*A000010(2*n) - 2*n.
a(n) = A083254(2*n) = A297114(2*n).
a(n) = -2*A176095(n).
a(n) = Sum_{d|2n} A008683(d)*A033879(2*n/d).
Showing 1-4 of 4 results.